| 1. | 0.36 | 2. | 3.6 × 10–2 |
| 3. | 3.6 × 10–3 | 4. | 3.6 |
Consider the following reaction taking place in 1L capacity container at 300 K.
\(\mathrm{A +B \rightleftharpoons C+D }\)
If one mole each of A and B are present initially and at equilibrium 0.7 mol of C is formed, then the equilibrium constant \((K_c) \) for the reaction is:
| 1. | 9.7 | 2. | 1.2 |
| 3. | 6.2 | 4. | 5.4 |
For the reaction \(3 \mathrm{O}_{2}(\mathrm{~g}) \rightleftharpoons 2 \mathrm{O}_{3}(\mathrm{g}) \) at 298 K, \(\text K_c\) is found to be \(3.0 \times 10^{-59} \). If the concentration of \(\text O_2\) at equilibrium is 0.040 M, then the concentration of \(\text O_3 \) in M is:
1. \(1.2 \times 10^{21} \)
2. \(4.38 \times 10^{-32} \)
3. \(1.9 \times 10^{-63} \)
4. \(2.4 \times 10^{31} \)
| 1. | Use of catalyst |
| 2. | Decreasing concentration of \(\mathrm{N_2}\) |
| 3. | Low pressure, high temperature and high concentration of ammonia |
| 4. | High pressure, low temperature and higher concentration of \(\mathrm{H_2}\) |
Mark the conditions that favour the maximum product formation in the given reaction.
1. Low temperature and high pressure.
2. Low temperature and low pressure.
3. High temperature and high pressure.
4. High temperature and low pressure.
| 1. | \(1.493\) | 2. | \(2.494\times10^{-2}\) |
| 3. | \(3.0\times10^{-6}\) | 4. | \(2.494\times10^{-4}\) |
| 1. | \(\mathrm{H}_{2(\mathrm{~g})}+\mathrm{I}_{2(\mathrm{~g})} \rightleftharpoons 2 \mathrm{HI}_{(\mathrm{g})}\) |
| 2. | \(\mathrm{CO}_{(\mathrm{g})}+\mathrm{H}_2 \mathrm{O}_{(\mathrm{g})} \rightleftharpoons \mathrm{CO}_{2(\mathrm{~g})}+\mathrm{H}_{2(\mathrm{~g})}\) |
| 3. | \(2 \mathrm{BrCl}_{(\mathrm{g})} \rightleftharpoons \mathrm{Br}_{2(\mathrm{~g})}+\mathrm{Cl}_{2(\mathrm{~g})}\) |
| 4. | \(\mathrm{PCl}_{5(\mathrm{~g})} \rightleftharpoons \mathrm{PCl}_{3(\mathrm{~g})}+\mathrm{Cl}_{2(\mathrm{~g})}\) |
Consider the given equilibrium constants:
\(\mathrm{{N}_2+3 {H}_2 ~\rightleftharpoons 2 {NH}_3 ~~~~~~~{K}_1 \\ {N}_2+{O}_2 ~~~\rightleftharpoons 2 {NO} ~~~~~~~~{K}_2 \\ {H}_2+\frac{1}{2} {O}_2 \rightleftharpoons {H}_2 {O} ~~~~~~~~{K}_3}\)
The equilibrium constant (K) of the following reaction will be:
\(2 \mathrm{NH}_3+\frac{5}{2} \mathrm{O}_2 \stackrel{\mathrm{~K}}{\rightleftharpoons} 2 \mathrm{NO}+3 \mathrm{H}_2 \mathrm{O}\)
| 1. | \( \dfrac{K_{2}K_{3}^{3}}{K_{1}}\) | 2. | \( \dfrac{K_{2}K_{3}}{K_{1}}\) |
| 3. | \( \dfrac{K_{2}^{3}K_{3}}{K_{1}}\) | 4. | \( \dfrac{K_{3}^{3}K_{1}}{K_{2}}\) |
If the equilibrium constant for N2(g) + O2 (g) ⇄ 2NO(g) is K, the equilibrium constant for \(\frac{1}{2}\)N2(g) + \(\frac{1}{2}\)O2(g) ⇄ NO(g) will be?
1.
2.
3. K
4.