A nucleus represented by the symbol \({}_{Z}^{A}\mathrm{X}\) has:
1. \(Z\) protons and \(A-Z\) neutrons
2. \(Z\) protons and \(A\) neutrons
3. \(A\) protons and \(Z-A\) neutrons
4. \(Z\) neutrons and \(A-Z\) protons
Subtopic:  Nuclear Binding Energy |
 90%
From NCERT
AIPMT - 2004
To view explanation, please take trial in the course.
NEET 2025 - Target Batch
Hints
To view explanation, please take trial in the course.
NEET 2025 - Target Batch

Which of the following pairs of nuclei are isotones?
1. \({}_{34}^{74}\mathrm{Se}, {}_{31}^{71}\mathrm{Ca}\)
2. \({}_{42}^{92}\mathrm{Mo}, {}_{40}^{92}\mathrm{Zr}\)
3. \({}_{38}^{81}\mathrm{Sr}, {}_{38}^{86}\mathrm{Sr}\)
4. \({}_{20}^{40}\mathrm{Ca}, {}_{16}^{32}\mathrm{S}\)

Subtopic:  Nuclear Binding Energy |
 85%
From NCERT
To view explanation, please take trial in the course.
NEET 2025 - Target Batch
Hints
To view explanation, please take trial in the course.
NEET 2025 - Target Batch

The binding energy of deuteron is \(2.2\) MeV and that of \({}_{2}^{4}\mathrm{He}\) is \(28\) MeV. If two deuterons are fused to form one \({}_{2}^{4}\mathrm{He}\) then the energy released is:
1. \(25.8\) MeV 2. \(23.6\) MeV
3. \(19.2\) MeV 4. \(30.2\) MeV
Subtopic:  Nuclear Binding Energy |
 82%
From NCERT
AIPMT - 2006
To view explanation, please take trial in the course.
NEET 2025 - Target Batch
Hints
To view explanation, please take trial in the course.
NEET 2025 - Target Batch

The binding energies of the nuclei \(A\) and \(B\) are \(E_a\) and \(E_b\) respectively. If three atoms of the element \(B\) fuse to give one atom of element \(A\) and an energy \(Q\) is released, then \(E_a, E_b\) and \(Q\) are related as:
1. \(E_a-3E_b= Q\)
2. \(3E_b-E_a= Q\)
3. \(E_a+ 3E_b=Q\)
4. \(E_b+ 3E_a=Q\)

Subtopic:  Nuclear Binding Energy |
 67%
From NCERT
To view explanation, please take trial in the course.
NEET 2025 - Target Batch
Hints
To view explanation, please take trial in the course.
NEET 2025 - Target Batch

If \(M(A,Z)\)\(M_p\) and \(M_n\) denote the masses of the nucleus \({}_{Z}^{A}\mathrm{X}\), proton, and neutron respectively in units of u (\(1\) u = \(931.5\) MeV/c2) and \(BE\) represents its binding energy in MeV, then:
1. \(M(A, Z)=Z_p+(A-Z) M_n-B E / c^2\)
2. \({M}({A}, {Z})={ZM}_{p}+({A}-{Z}) {M}_{n}+{BE}\)
3. \(M(A, Z)=Z_p+(A-Z) M_n-B E\)
4. \({M}({A}, {Z})={ZM}_{p}+({A}-{Z}) {M}_{n}+{BE/c}^2 \)
Subtopic:  Nuclear Binding Energy |
 65%
From NCERT
AIPMT - 2008
To view explanation, please take trial in the course.
NEET 2025 - Target Batch
Hints
To view explanation, please take trial in the course.
NEET 2025 - Target Batch

If in a nuclear fusion process. the masses of the fusing nuclei be \(m_1\) and \(m_2\) and the mass of the resultant nucleus be \(m_3,\) then:
1. \( m_3=\left|m_1-m_2 \right|\) 2. \( m_3<\left ( m_1+m_2 \right ) \)
3. \( m_3>\left ( m_1+m_2 \right ) \) 4. \( m_3=\left ( m_1+m_2 \right ) \)
Subtopic:  Nuclear Binding Energy |
 78%
From NCERT
AIPMT - 2004
To view explanation, please take trial in the course.
NEET 2025 - Target Batch
Hints
To view explanation, please take trial in the course.
NEET 2025 - Target Batch

The mass of a proton is \(1.0073\) u and that of a neutron is \(1.0087\) u (u = atomic mass unit). The binding energy of \({}_{2}^{4}\mathrm{He}\) is: (Given: helium nucleus mass ≈ \(4.0015\) u)
1. \(0.0305\) J 2. \(0.0305\) erg
3. \(28.4\) MeV 4. \(0.061\) u
Subtopic:  Nuclear Binding Energy |
 75%
From NCERT
AIPMT - 2003
To view explanation, please take trial in the course.
NEET 2025 - Target Batch
Hints
To view explanation, please take trial in the course.
NEET 2025 - Target Batch

The binding energy per nucleon of deuterium and helium atom is \(1.1\) MeV and \(7.0\) MeV. If two deuterium nuclei fuse to form a helium atom, the energy released is:
1. \(19.2\) MeV
2. \(23.6\) MeV
3. \(26.9\) MeV 
4. \(13.9\) MeV
Subtopic:  Nuclear Binding Energy |
 76%
From NCERT
PMT - 2001
To view explanation, please take trial in the course.
NEET 2025 - Target Batch
Hints
To view explanation, please take trial in the course.
NEET 2025 - Target Batch

In a fission reaction,
\(^{236}_{92}\mathrm{U}\rightarrow ~^{117}\mathrm{X}~+~^{117}\mathrm{Y}~+~^1_0n~+~^1_0n,\) the binding energy per nucleon of \(\mathrm{X}\) and \(\mathrm{Y}\) is \(8.5\) MeV whereas that of \(^{236}\mathrm{U}\) is \(7.6\) MeV. The total energy liberated will be about:
1. \(2000\) MeV
2. \(200\) MeV
3. \(2\) MeV 
4. \(1\) keV

Subtopic:  Nuclear Binding Energy |
 76%
From NCERT
To view explanation, please take trial in the course.
NEET 2025 - Target Batch
Hints
To view explanation, please take trial in the course.
NEET 2025 - Target Batch

In the reaction \({}_{1}^{2}\mathrm{H}+ {}_{1}^{3}\mathrm{H}\rightarrow {}_{2}^{4}\mathrm{He}+ {}_{0}^{1}\mathrm{n}\)
if the binding energies of \({}_{1}^{2}\mathrm{H}, {}_{1}^{3}\mathrm{H},\) and \({}_{2}^{4}\mathrm{He}\) are respectively \(a,b,\) and \(c\) (in MeV), then the energy in (MeV) released in this reaction is:
1. \(c+a-b\)
2. \(c-a-b\)
3. \(a+b​​​​+c\)
4. \(a+b-c\)

Subtopic:  Nuclear Binding Energy |
 73%
From NCERT
To view explanation, please take trial in the course.
NEET 2025 - Target Batch
Hints
To view explanation, please take trial in the course.
NEET 2025 - Target Batch