The approximately nuclear radii ratio of the gold isotope \(_{79}^{197}\textrm{Au}\) and the silver isotope \(_{47}^{107}\textrm{Au}\) is:
1. \(1: 1.23\)
2. \(1 : 1.32\)
3. \(1.01 : 1\)
4. \(1.22 : 1\)
The radionuclide \(^{11}_{6}C\) decays according to \(^{11}_{6}C \rightarrow ~^{11}_{5}B+e^{+}+\nu\): \(\left(T_{\frac{1}{2}}=20.3~\text{min}\right)\)
The maximum energy of the emitted position is \(0.960~\text{MeV}\).
Given the mass values:
\(m\left(_{6}^{11}C\right) = 11.011434~\text{u}~\text{and}~ m\left(_{6}^{11}B\right) = 11.009305~\text{u},\)
The value of \(Q\) is:
1. \(0.313~\text{MeV}\)
2. \(0.962~\text{MeV}\)
3. \(0.414~\text{MeV}\)
4. \(0.132~\text{MeV}\)
The nucleus decays by β– emission. What is the maximum kinetic energy of the electrons emitted? Given that:
m () = 22.994466 u
m () = 22.989770 u.
1. 4.201 MeV
2. 3.791 MeV
3. 4.374 MeV
4. 3.851 MeV
The fission properties of are very similar to those of . The average energy released per fission is 180 MeV. How much energy, in MeV, is released if all the atoms in 1 kg of pure undergo fission?
1. \(2.5\times 10^{25}\) MeV
2. \(4.5\times 10^{25}\) MeV
3. \(2.5\times 10^{26}\) MeV
4. \(4.5\times 10^{26}\) MeV
A 1000 MW fission reactor consumes half of its fuel in 5.00 yr. How much did it contain initially? Assume that the reactor operates 80% of the time, that all the energy generated arises from the fission of, and that this nuclide is consumed only by the fission process.
1. 4386 kg.
2. 3076 kg.
3. 4772 kg.
4. 8799 kg.
1. | \(4.9 \times 10^{4} \text{ years }\) | 2. | \(2.8 \times 10^{4} \text { years }\) |
3. | \(3.0 \times 10^{4} \text { years }\) | 4. | \(3.9 \times 10^{4} \text { years }\) |
What is the height of the potential barrier for a head-on collision of two deuterons? (Assume that they can be taken as hard spheres of radius 2.0 fm.)
1. 300 keV
2. 360 keV
3. 376 keV
4. 356 keV
The neutron separation energy is defined as the energy required to remove a neutron from the nucleus. The neutron separation energies of the nuclei \(_{20}^{41}\mathrm{Ca}\) is:
Given that:
\(\begin{aligned} & \mathrm{m}\left({ }_{20}^{40} \mathrm{C a}\right)=39.962591~ \text{u}\\ & \mathrm{m}\left({ }_{20}^{41} \mathrm{C a}\right)=40.962278 ~\text{u} \end{aligned}\)
1. \(7.657~\text{MeV}\)
2. \(8.363~\text{MeV}\)
3. \(9.037~\text{MeV}\)
4. \(9.861~\text{MeV}\)
Consider the fission of \(_{92}^{238}\mathrm{U}\) by fast neutrons. In one fission event, no neutrons are emitted and the final end products, after the beta decay of the primary fragments, are \({}_{58}^{140}\mathrm{Ce}\) and \({}_{44}^{99}\mathrm{Ru}\). What is \(Q\) for this fission process? The relevant atomic and particle masses are:
\(\mathrm m\left(_{92}^{238}\mathrm{U}\right)= 238.05079~\text{u}\)
\(\mathrm m\left(_{58}^{140}\mathrm{Ce}\right)= 139.90543~\text{u}\)
\(\mathrm m\left(_{44}^{99}\mathrm{Ru}\right)= 98.90594~\text{u}\)
1. \(303.037~\text{MeV}\)
2. \(205.981~\text{MeV}\)
3. \(312.210~\text{MeV}\)
4. \(231.007~\text{MeV}\)
Consider the \(\mathrm{(D\text–T)}\) reaction (deuterium-tritium fusion); \({ }_1^2 \mathrm{H}+{ }_1^3 \mathrm{H} \longrightarrow{ }_2^4 \mathrm{He}+\mathrm{n}.\) The energy released in \(\text{MeV}\) in this reaction from the data is:
[take \({m}\left({ }_1^2 \mathrm H\right)=2.014102~ \text{u},\) \({m}\left({ }_2^4 \mathrm{He}\right)=4.002603 ~ \text{u} ,\) \({m}(\mathrm{n})=1.00867 ~\text{u} ,\) and \({m}\left({ }_1^3 \mathrm{H}\right)=3.016049~ \text{u} \)]
1. \(17.59~\text{MeV}\)
2. \(18.01~\text{MeV}\)
3. \(20.03~\text{MeV}\)
4. \(19.68~\text{MeV}\)