# Two stable isotopes of lithium $$^{6}_{3}\mathrm{Li}$$ and $$^{7}_{3}\mathrm{Li}$$ have respective abundances of $$7.5\%$$ and $$92.5\%$$. These isotopes have masses $$6.01512~\text{u}$$ and $$7.01600~\text{u}$$, respectively. The atomic mass of lithium is: 1. $$6.940934~\text{u}$$ 2. $$6.897643~\text{u}$$ 3. $$7.863052~\text{u}$$ 4. $$7.167077~\text{u}$$

Subtopic:  Nuclear Binding Energy |
67%
From NCERT
To view explanation, please take trial in the course.
NEET 2025 - Target Batch
Hints
To view explanation, please take trial in the course.
NEET 2025 - Target Batch

The three stable isotopes of neon:  have respective abundances of 90.51%, 0.27%, and 9.22%. The atomic masses of the three isotopes are 19.99 u, 20.99 u, and 21.99 u, respectively. The average atomic mass of neon is:

1. 20.1709 u
2. 21.7037 u
3. 20.1771 u
4. 21.0097 u

Subtopic:  Nuclear Binding Energy |
58%
To view explanation, please take trial in the course.
NEET 2025 - Target Batch
Hints

What is the binding energy (in MeV) of a nitrogen nucleus ${}_{7}{}^{14}N$?

1. 102.7 MeV.
2. 100.7 MeV.
3. 104.7 MeV.
4. 108.7 MeV.

Subtopic:  Nuclear Binding Energy |
55%
To view explanation, please take trial in the course.
NEET 2025 - Target Batch
Hints

A given coin has a mass of 3.0 g. How much nuclear energy would be required to separate all the neutrons and protons from each other? For simplicity assume that the coin is entirely made of ${}_{29}{}^{63}Cu$ atoms (of mass 62.92960 u).

1. $$2.5296\times10^{12}$$ MeV
2. $$1.581\times10^{25}$$  MeV
3. $$3.1223\times10^{20}$$ MeV
4. $$931.02\times10^{19}$$ MeV

Subtopic:  Nuclear Binding Energy |
53%
To view explanation, please take trial in the course.
NEET 2025 - Target Batch
Hints

The approximately nuclear radii ratio of the gold isotope ${}_{79}{}^{197}Au$ and the silver isotope ${}_{47}{}^{107}Ag$ is:

1. 1:1.23
2. 1:1.32
3. 1.01:1
4. 1.22:1

Subtopic:  Nuclear Energy |
57%
To view explanation, please take trial in the course.
NEET 2025 - Target Batch
Hints

The radionuclide $$^{11}_{6}C$$ decays according to $$^{11}_{6}C \rightarrow ~^{11}_{5}B+e^{+}+\nu$$$$\left(T_{\frac{1}{2}}=20.3~\text{min}\right)$$
The maximum energy of the emitted position is $$0.960~\text{MeV}$$.
Given the mass values: $$m\left(_{6}^{11}C\right) = 11.011434~\text{u}~\text{and}~ m\left(_{6}^{11}B\right) = 11.009305~\text{u},$$
The value of $$Q$$
is:
1. $$0.313~\text{MeV}$$
2. $$0.962~\text{MeV}$$
3. $$0.414~\text{MeV}$$
4. $$0.132~\text{MeV}$$

Subtopic:  Nuclear Binding Energy |
64%
From NCERT
To view explanation, please take trial in the course.
NEET 2025 - Target Batch
Hints
To view explanation, please take trial in the course.
NEET 2025 - Target Batch

The nucleus ${}_{10}{}^{23}\mathrm{Ne}$ decays by β emission. What is the maximum kinetic energy of the electrons emitted? Given that:

(${}_{10}{}^{23}Ne$) = 22.994466 u

(${}_{11}{}^{23}Na$) = 22.989770 u.

1. 4.201 MeV
2. 3.791 MeV
3. 4.374 MeV
4. 3.851 MeV

Subtopic:  Nuclear Binding Energy |
55%
To view explanation, please take trial in the course.
NEET 2025 - Target Batch
Hints

The fission properties of ${}_{94}{}^{239}Pu$ are very similar to those of ${}_{92}{}^{235}U$. The average energy released per fission is 180 MeV. How much energy, in MeV, is released if all the atoms in 1 kg of pure ${}_{94}{}^{239}Pu$ undergo fission?

1. $$2.5\times 10^{25}$$
MeV
2. $$4.5\times 10^{25}$$ MeV
3. $$2.5\times 10^{26}$$ MeV
4.
$$4.5\times 10^{26}$$ MeV

Subtopic:  Nuclear Binding Energy |
To view explanation, please take trial in the course.
NEET 2025 - Target Batch
Hints

A 1000 MW fission reactor consumes half of its fuel in 5.00 yr. How much ${}_{92}{}^{235}U$ did it contain initially? Assume that the reactor operates 80% of the time, that all the energy generated arises from the fission of, ${}_{92}{}^{235}U$ and that this nuclide is consumed only by the fission process.

1. 4386 kg.
2. 3076 kg.
3. 4772 kg.
4. 8799 kg.

Subtopic:  Nuclear Energy |
54%
To view explanation, please take trial in the course.
NEET 2025 - Target Batch
Hints

How long can an electric lamp of 100 W be kept glowing by fusion of 2.0 kg of deuterium? Take the fusion reaction as:

${}_{1}{}^{2}H+{}_{1}{}^{2}H$ $\to$ ${}_{2}{}^{3}He+n+3.27$ $MeV$.

 1 $$4.9 \times 10^{4} \text { years }$$ 2 $$2.8 \times 10^{4} \text { years }$$ 3 $$3.0 \times 10^{4} \text { years }$$ 4 $$3.9 \times 10^{4} \text { years }$$
Subtopic:  Nuclear Energy |
From NCERT
To view explanation, please take trial in the course.
NEET 2025 - Target Batch
Hints