1. | \(-1.5~\text{eV}\) | 2. | \(-1.6~\text{eV}\) |
3. | \(-1.3~\text{eV}\) | 4. | \(-1.4~\text{eV}\) |
Let \(L_1\) and \(L_2\) be the orbital angular momentum of an electron in the first and second excited states of the hydrogen atom, respectively. According to Bohr's model, the ratio \(L_1:L_2\) is:
1. \(1:2\)
2. \(2:1\)
3. \(3:2\)
4. \(2:3\)
For which one of the following Bohr models is not valid?
1. | Singly ionised helium atom \(\big(\mathrm{He}^{+}\big).\) |
2. | Deuteron atom. |
3. | Singly ionised neon atom \(\big(\mathrm{Ne}^{+}\big).\) |
4. | Hydrogen atom. |
The total energy of an electron in the \(n^{th}\) stationary orbit of the hydrogen atom can be obtained by:
1. \(E_n = \frac{13.6}{n^2}~\text{eV}\)
2. \(E_n = -\frac{13.6}{n^2}~\text{eV}\)
3. \(E_n = \frac{1.36}{n^2}~\text{eV}\)
4. \(E_n = -{13.6}\times{n^2}~\text{eV}\)
1. | \(3.4~\text{eV},~3.4~\text{eV}\) |
2. | \(-3.4~\text{eV},~-3.4~\text{eV}\) |
3. | \(-3.4~\text{eV},~-6.8~\text{eV}\) |
4. | \(3.4~\text{eV},~-6.8~\text{eV}\) |
1. | \(0.53\times10^{-13}~\text{m}, ~-3.6~\text{eV}\) |
2. | \(25.6\times10^{-13}~\text{m}, ~-2.8~\text{eV}\) |
3. | \(2.56\times10^{-13}~\text{m}, ~-2.8~\text{keV}\) |
4. | \(2.56\times10^{-13}~\text{m}, ~-13.6~\text{eV}\) |