In a plane electromagnetic wave travelling in free space, the electric field component oscillates sinusoidally at a frequency of \(2.0\times 10^{10}~ \text{Hz}\) and amplitude \(48~\text{Vm}^{-1}\). Then the amplitude of the oscillating magnetic field is: (Speed of light in free space \(3\times 10^{8}~ \text{ms}^{-1}\))
1. \(1.6 \times 10^{-6} ~\text{T}\)
2. \(1.6 \times 10^{-9} ~\text{T}\)
3. \(1.6 \times 10^{-8} ~\text{T}\)
4. \(1.6 \times 10^{-7} ~\text{T}\)

Subtopic:  Properties of EM Waves |
 58%
From NCERT
NEET - 2023
Please attempt this question first.
Hints
Please attempt this question first.

\(\varepsilon_0\) and \(\mu_0\) are the electric permittivity and magnetic permeability of free space respectively. If the corresponding quantities of a medium are \(2\varepsilon_0\) and \(1.5\mu_0\) respectively, the refractive index of the medium will nearly be:
1. \(\sqrt2\)
2. \(\sqrt3\)
3. \(3\)
4. \(2\)
Subtopic:  Properties of EM Waves |
 78%
From NCERT
NEET - 2023
Please attempt this question first.
Hints
Please attempt this question first.

To produce an instantaneous displacement current of \(2~\text{mA}\) in the space between the parallel plates of a capacitor of capacitance \(4~\mu\text{F}\), the rate of change of applied variable potential difference \(\left(\frac{dV}{dt}\right)\) must be:
1. \( 800~ \text{V} / \text{s} \)
2. \( 500~ \text{V} / \text{s} \)
3. \( 200~ \text{V} / \text{s} \)
4. \( 400 ~\text{V} / \text{s}\)
Subtopic:  Displacement Current |
 77%
From NCERT
NEET - 2023
Please attempt this question first.
Hints
Please attempt this question first.

advertisementadvertisement

The ratio of the magnitude of the magnetic field and electric field intensity of a plane electromagnetic wave in free space of permeability \(\mu_0\) and permittivity \(\varepsilon_0\) is:
(Given that \(c=\) velocity of light in free space)
1.  \(c\)
2.  \(\dfrac1c\)
3.  \(\dfrac{c}{\sqrt{\mu_0\varepsilon_0}}\)
4.  \(\dfrac{\sqrt{\mu_0\varepsilon_0}}{c}\)
Subtopic:  Properties of EM Waves |
 58%
From NCERT
NEET - 2022
To view explanation, please take trial in the course.
NEET 2025 - Target Batch
Hints
To view explanation, please take trial in the course.
NEET 2025 - Target Batch

The magnetic field of a plane electromagnetic wave
is given by, 
\(\vec B=3\times10^{-8}\text{cos}(1.6\times10^3x+48\times10^{10}t)\hat j~\text{T}.\)
The associated electric field will be:
1. \(3 \times 10^{-8} \text{cos}\left(1.6 \times 10^3 x+48 \times 10^{10} t\right) \hat{i}~\text{ V/m}\)
2. \(3 \times 10^{-8} \text{sin} \left(1.6 \times 10^3 {x}+48 \times 10^{10} {t}\right) \hat{{i}}~ \text{V} / \text{m}\)
3. \(9 \text{sin} \left(1.6 \times 10^3 {x}-48 \times 10^{10} {t}\right) \hat{{k}} ~~\text{V} / \text{m}\)
4. \(9 \text{cos} \left(1.6 \times 10^3 {x}+48 \times 10^{10} {t}\right) \hat{{k}}~~\text{V} / \text{m}\)
Subtopic:  Properties of EM Waves |
 56%
From NCERT
NEET - 2022
To view explanation, please take trial in the course.
NEET 2025 - Target Batch
Hints
To view explanation, please take trial in the course.
NEET 2025 - Target Batch

An electromagnetic wave is moving along negative \(z (-z)\) direction and at any instant of time, at a point, its electric field vector is \(3\hat j~\text{V/m}\). The corresponding magnetic field at that point and instant will be: (Take \(c=3\times10^{8}~\text{ms}^{-1}\))
1. \(10\hat i~\text{nT}\) 2. \(-10\hat i~\text{nT}\)
3. \(\hat i~\text{nT}\) 4. \(-\hat i~\text{nT}\)
Subtopic:  Properties of EM Waves |
 53%
From NCERT
NEET - 2022
To view explanation, please take trial in the course.
NEET 2025 - Target Batch
Hints
To view explanation, please take trial in the course.
NEET 2025 - Target Batch

advertisementadvertisement

If \(\lambda_X,\lambda_I,\lambda_M\) and \(\lambda_\gamma\) are the wavelengths of \(X\)-rays, infrared rays, microwaves and \(\gamma\)-rays respectively, then:
1. \(\lambda_\gamma<\lambda_X<\lambda_I<\lambda_M\)
2. \(\lambda_M<\lambda_I<\lambda_X<\lambda_\gamma\)
3. \(\lambda_X<\lambda_\gamma<\lambda_M<\lambda_I\)
4. \(\lambda_X<\lambda_I<\lambda_\gamma<\lambda_M\)
Subtopic:  Electromagnetic Spectrum |
 82%
From NCERT
NEET - 2022
To view explanation, please take trial in the course.
NEET 2025 - Target Batch
Hints
To view explanation, please take trial in the course.
NEET 2025 - Target Batch

When light propagates through a material medium of relative permittivity, \(\varepsilon_{r}\) and relative permeability, \(\mu_{r}\) the velocity of light, \(v\) is given by:
(\(c\) = velocity of light in vacuum)
1. \(v=\dfrac{{c}}{\sqrt{\varepsilon_{r} \mu_{{r}}}}\)
2. \(v={c}\)
3. \(v=\sqrt{\dfrac{\mu_{{r}}}{\varepsilon_{{r}}}}\)
4. \(v=\sqrt{\dfrac{\varepsilon_{{r}}}{\mu_{{r}}}}\)
Subtopic:  Properties of EM Waves |
 85%
From NCERT
NEET - 2022
To view explanation, please take trial in the course.
NEET 2025 - Target Batch
Hints
To view explanation, please take trial in the course.
NEET 2025 - Target Batch

Match List - I with List - II.
List -I (Electromagnetic waves) List - II (Wavelength)
(a) AM radio waves (i) \(10^{-10}~\text{m}\)
(b) Microwaves (ii) \(10^{2} ~\text{m}\)
(c) Infrared radiation (iii) \(10^{-2} ~\text{m}\)
(d) \(X\)-rays (iv) \(10^{-4} ~\text{m}\)

Choose the correct answer from the options given below:
(a) (b) (c) (d)
1. (ii) (iii) (iv) (i)
2. (iv) (iii) (ii) (i)
3. (iii) (ii) (i) (iv)
4. (iii) (iv) (ii) (i)
Subtopic:  Electromagnetic Spectrum |
 72%
From NCERT
NEET - 2022
To view explanation, please take trial in the course.
NEET 2025 - Target Batch
Hints
To view explanation, please take trial in the course.
NEET 2025 - Target Batch

advertisementadvertisement

A parallel plate capacitor is charged by connecting it to a battery through a resistor. If \(i\) is the current in the circuit, then in the gap between the plates:
1. displacement current of magnitude equal to \(i\) flows in the same direction as \(i\).
2. displacement current of magnitude equal to \(i\) flows in a direction opposite to that of \(i\).
3. displacement current of magnitude greater than \(i\) flows but can be in any direction.
4. there is no current.
Subtopic:  Displacement Current |
 53%
From NCERT
NEET - 2024
Please attempt this question first.
Hints
Please attempt this question first.