A circular disc of radius \(0.2\) m is placed in a uniform magnetic field of induction \(\frac{1}{\pi} \left(\frac{\text{Wb}}{\text{m}^{2}}\right)\) in such a way that its axis makes an angle of \(60^{\circ}\) with \(\vec {B}.\) The magnetic flux linked to the disc will be:

1. \(0.02\) Wb 2. \(0.06\) Wb
3. \(0.08\) Wb 4. \(0.01\) Wb
Subtopic:  Magnetic Flux |
 86%
From NCERT
NEET - 2008
To view explanation, please take trial in the course.
NEET 2025 - Target Batch
Hints
Links
To view explanation, please take trial in the course.
NEET 2025 - Target Batch

If a current is passed through a circular loop of radius \(R\) then magnetic flux through a coplanar square loop of side \(l\) as shown in the figure \((l<<R)\) is:

          

1. \(\frac{\mu_{0} l}{2} \frac{R^{2}}{l}\) 2. \(\frac{\mu_{0} I l^{2}}{2 R}\)
3. \(\frac{\mu_{0} l \pi R^{2}}{2 l}\) 4. \(\frac{\mu_{0} \pi R^{2} I}{l}\)
Subtopic:  Magnetic Flux |
 82%
From NCERT
Please attempt this question first.
Hints
Links
Please attempt this question first.

The radius of a loop as shown in the figure is \(10~\text{cm}.\) If the magnetic field is uniform and has a value \(10^{-2}~ \text{T},\) then the flux through the loop will be:
            

1. \(2 \pi \times 10^{-2}~\text{Wb}\) 2. \(3 \pi \times 10^{-4}~\text{Wb}\)
3. \(5 \pi \times 10^{-5}~\text{Wb}\) 4. \(5 \pi \times 10^{-4}~\text{Wb}\)
Subtopic:  Magnetic Flux |
 77%
From NCERT
Please attempt this question first.
Hints
Links
Please attempt this question first.

advertisementadvertisement

What is the dimensional formula of magnetic flux?
1. \(\left[ M L^2 T^{-2}A^{-1}\right]\)
2. \(\left[ M L^1 T^{-1}A^{-2}\right]\)
3. \(\left[ M L^2 T^{-3}A^{-1}\right]\)
4. \(\left[ M L^{-2} T^{-2}A^{-2}\right]\)

Subtopic:  Magnetic Flux |
 73%
From NCERT
Please attempt this question first.
Hints
Links
Please attempt this question first.

The magnetic flux linked with a coil varies with time as \(\phi = 2t^2-6t+5,\) where \(\phi \) is in Weber and \(t\) is in seconds. The induced current is zero at:

1. \(t=0\) 2. \(t= 1.5~\text{s}\)
3. \(t=3~\text{s}\) 4. \(t=5~\text{s}\)
Subtopic:  Faraday's Law & Lenz Law |
 89%
From NCERT
To view explanation, please take trial in the course.
NEET 2025 - Target Batch
Hints
Links
To view explanation, please take trial in the course.
NEET 2025 - Target Batch

A coil having number of turns \(N\) and cross-sectional area \(A\) is rotated in a uniform magnetic field \(B\) with an angular velocity \(\omega\). The maximum value of the emf induced in it is:
1. \(\frac{NBA}{\omega}\)
2. \(NBAω\)
3. \(\frac{NBA}{\omega^{2}}\)
4. \(NBAω^{2}\)

Subtopic:  Faraday's Law & Lenz Law |
 88%
From NCERT
To view explanation, please take trial in the course.
NEET 2025 - Target Batch
Hints
Links
To view explanation, please take trial in the course.
NEET 2025 - Target Batch

advertisementadvertisement

The current in a coil varies with time \(t\) as \(I= 3 t^{2} +2t\). If the inductance of coil be \(10\) mH, the value of induced emf at \(t=2~\text{s}\) will be:
1. \(0.14~\text{V}\)
2. \(0.12~\text{V}\)
3. \(0.11~\text{V}\)
4. \(0.13~\text{V}\)

Subtopic:  Faraday's Law & Lenz Law |
 87%
From NCERT
To view explanation, please take trial in the course.
NEET 2025 - Target Batch
Hints
Links
To view explanation, please take trial in the course.
NEET 2025 - Target Batch

A bar magnet is released along the vertical axis of the conducting coil. The acceleration of the bar magnet is:

         

1. greater than \(g\). 2. less than \(g\).
3. equal to \(g\). 4. zero.
Subtopic:  Faraday's Law & Lenz Law |
 86%
From NCERT
To view explanation, please take trial in the course.
NEET 2025 - Target Batch
Hints
Links
To view explanation, please take trial in the course.
NEET 2025 - Target Batch

A coil having an area \(A_0\) is placed in a magnetic field which changes from \(B_0~\text{to}~4B_0\) in time interval \(t\). The average EMF induced in the coil will be:
1. \(\frac{3 A_{0} B_{0}}{t}\)
2. \(\frac{4 A_{0} B_{0}}{t}\)
3. \(\frac{3 B_{0}}{A_{0} t}\)
4. \(\frac{4 B_{0}}{A_{0} t}\)
Subtopic:  Faraday's Law & Lenz Law |
 88%
From NCERT
To view explanation, please take trial in the course.
NEET 2025 - Target Batch
Hints
Links
To view explanation, please take trial in the course.
NEET 2025 - Target Batch

advertisementadvertisement

A wire loop is rotated in a magnetic field. The frequency of change of direction of the induced e.m.f. is:

1. Twice per revolution 2. Four times per revolution
3. Six times per revolution 4. Once per revolution
Subtopic:  Faraday's Law & Lenz Law |
 73%
From NCERT
AIPMT - 2013
To view explanation, please take trial in the course.
NEET 2025 - Target Batch
Hints
Links
To view explanation, please take trial in the course.
NEET 2025 - Target Batch