1. | A linearly decreasing function of distance upto the boundary of the wire and then a linearly increasing one for the outside region. |
2. | Uniform and remains constant for both regions. |
3. | A linearly increasing function of distance upto the boundary of the wire and then a linearly decreasing one for the outside region. |
4. | A linearly increasing function of distance \(r\) upto the boundary of the wire and then decreasing one with \(1/r\) dependence for the outside region. |
A thick current-carrying cable of radius '\(R\)' carries current \('I'\) uniformly distributed across its cross-section. The variation of magnetic field \(B(r)\) due to the cable with the distance '\(r\)' from the axis of the cable is represented by:
1. | |
2. | |
3. | 4. |
A cylindrical conductor of radius \(R\) is carrying a constant current. The plot of the magnitude of the magnetic field \(B\) with the distance \(d\) from the centre of the conductor is correctly represented by the figure:
1. | 2. | ||
3. | 4. |
Two toroids \(1\) and \(2\) have total no. of turns \(200\) and \(100\) respectively with average radii \(40~\text{cm}\) and \(20~\text{cm}\) respectively. If they carry the same current \(i,\) what will be the ratio of the magnetic fields along the two loops?
1. \(1:1\)
2. \(4:1\)
3. \(2:1\)
4. \(1:2\)
A long solenoid carrying a current produces a magnetic field \(B\) along its axis.
If the current is doubled and the number of turns per cm is halved, what will be the new value of the magnetic field?
1. \(B/2\)
2. \(B\)
3. \(2B\)
4. \(4B\)