A battery of internal resistance r, when connected across \(2~\Omega\) resistor supplies a current of 4 A. When the battery is connected across a \(5~\Omega\) resistor, it supplies a current of 2 A. The value of r is: 

1. \(2~\Omega\) 2 \(1~\Omega\)
3. \(0.5~\Omega\) 4. Zero
Subtopic:  EMF & Terminal Voltage |
 82%
From NCERT
To view explanation, please take trial in the course.
NEET 2023 - Target Batch - Aryan Raj Singh
Hints
Links
To view explanation, please take trial in the course.
NEET 2023 - Target Batch - Aryan Raj Singh

A student measures the terminal potential difference \(V\) of a cell (of emf \( E\) and internal resistance \(R\)) as a function of the current \(I\) flowing through it. The slope and intercept of the graph between \(V\) and \(I\), respectively, is equal to:
1. \(E\) and \(-r\)
2. \(-r\) and \(E\)
3. \(r\) and \(-E\)
4. \(-E\) and \(r\)
Subtopic:  EMF & Terminal Voltage |
 69%
From NCERT
AIPMT - 2009
To view explanation, please take trial in the course.
NEET 2023 - Target Batch - Aryan Raj Singh
Hints
Links
To view explanation, please take trial in the course.
NEET 2023 - Target Batch - Aryan Raj Singh

A battery is charged at a potential of 15 V for 8 hours when the current flowing is 10 A. The battery on discharge supplies a current of 5 A for 15 hours. The mean terminal voltage during discharges is 14 V. The "Watt hour" efficiency of the battery is:

1. 80%

2. 90%

3. 87.5%

4. 82.5% 

Subtopic:  EMF & Terminal Voltage |
 68%
From NCERT
AIPMT - 2004
To view explanation, please take trial in the course.
NEET 2023 - Target Batch - Aryan Raj Singh
Hints
Links
To view explanation, please take trial in the course.
NEET 2023 - Target Batch - Aryan Raj Singh

advertisementadvertisement

A battery of e.m.f. E and internal resistance r is connected to a variable resistor R as shown below. Which one of the following is true​​​​​​?

          

1. Potential difference across the terminals of the battery is maximum when R = r.
2. Power delivered to the resistor is maximum when R = r.
3. Current in the circuit is maximum when R = r.
4. Current in the circuit is maximum when R >> r.

Subtopic:  EMF & Terminal Voltage |
 64%
From NCERT
PMT - 1995
To view explanation, please take trial in the course.
NEET 2023 - Target Batch - Aryan Raj Singh
Hints
Links
To view explanation, please take trial in the course.
NEET 2023 - Target Batch - Aryan Raj Singh