The potential difference \(V_{A}-V_{B}\) between the points \({A}\) and \({B}\) in the given figure is:
     

1. \(-3~\text{V}\) 2. \(+3~\text{V}\)
3. \(+6~\text{V}\) 4. \(+9~\text{V}\)

Subtopic:  Kirchoff's Voltage Law |
 80%
Level 1: 80%+
NEET - 2016
Hints
Links

premium feature crown icon
Unlock IMPORTANT QUESTION
This question was bookmarked by 5 NEET 2025 toppers during their NEETprep journey. Get Target Batch to see this question.
✨ Perfect for quick revision & accuracy boost
Buy Target Batch
Access all premium questions instantly
The charge flowing through a resistance \(R\) varies with time \(t\) as \(Q=at-bt^2,\) where \(a\) and \(b\) are positive constants. The total heat produced in \(R\) is:
1. \(\dfrac{a^3R}{3b}\) 2. \(\dfrac{a^3R}{2b}\)
3. \(\dfrac{a^3R}{b}\) 4. \(\dfrac{a^3R}{6b}\)
Subtopic:  Heating Effects of Current |
 56%
Level 3: 35%-60%
NEET - 2016
Hints
Links

Two metal wires of identical dimensions are connected in series. If \(\sigma_1~\text{and}~\sigma_2\) are the conductivities of the metal wires respectively, the effective conductivity of the combination is:
1. \(\dfrac{2\sigma_1 \sigma_2}{\sigma_1+\sigma_2}\)
2. \(\dfrac{\sigma_1 +\sigma_2}{2\sigma_1\sigma_2}\)
3. \(\dfrac{\sigma_1 +\sigma_2}{\sigma_1\sigma_2}\)
4. \(\dfrac{\sigma_1 \sigma_2}{\sigma_1+\sigma_2}\)

Subtopic:  Derivation of Ohm's Law |
 64%
Level 2: 60%+
NEET - 2015
Hints
Links

advertisementadvertisement

\({A, B}~\text{and}~{C}\) are voltmeters of resistance \(R,\) \(1.5R\) and \(3R\) respectively as shown in the figure above. When some potential difference is applied between \({X}\) and \({Y},\) the voltmeter readings are \({V}_{A},\) \({V}_{B}\) and \({V}_{C}\) respectively. Then:

        

1. \({V}_{A} ={V}_{B}={V}_{C}\) 2. \({V}_{A} \neq{V}_{B}={V}_{C}\)
3. \({V}_{A} ={V}_{B}\neq{V}_{C}\) 4. \({V}_{A} \ne{V}_{B}\ne{V}_{C}\)

Subtopic:  Kirchoff's Voltage Law |
 65%
Level 2: 60%+
NEET - 2015
Hints
Links

Across a metallic conductor of non-uniform cross-section, a constant potential difference is applied. The quantity which remains constant along the conductor is:
1. current density 2. current
3. drift velocity 4. electric field
Subtopic:  Current & Current Density |
 62%
Level 2: 60%+
NEET - 2015
Hints
Links

Two cities are \(150~\text{km}\) apart. The electric power is sent from one city to another city through copper wires. The fall of potential per km is \(8~\text{volts}\) and the average resistance per \(\text{km}\) is \(0.5~\text{ohm}.\) The power loss in the wire is:

1. \(19.2~\text{W}\) 2. \(19.2~\text{kW}\)
3. \(19.2~\text{J}\) 4. \(12.2~\text{kW}\)
Subtopic:  Heating Effects of Current |
 84%
Level 1: 80%+
AIPMT - 2014
Hints
Links

advertisementadvertisement

A wire of resistance \(4~\Omega\) is stretched to twice its original length. The resistance of a stretched wire would be:
1. \(4~\Omega\)
2. \(8~\Omega\)
3. \(16~\Omega\)
4. \(2~\Omega\)
Subtopic:  Derivation of Ohm's Law |
 84%
Level 1: 80%+
AIPMT - 2013
Hints
Links

The internal resistance of a \(2.1~\text{V}\) cell which gives a current of \(0.2~\text{A}\) through a resistance of \(10~\Omega\) is:
1. \(0.5~\Omega\) 2. \(0.8~\Omega\)
3. \(1.0~\Omega\) 4. \(0.2~\Omega\)
Subtopic:  EMF & Terminal Voltage |
 85%
Level 1: 80%+
AIPMT - 2013
Hints
Links

The resistances of the four arms \(P,Q,R~\text{and}~S\) in a Wheatstone’s bridge are \(10~\Omega,30~\Omega,30~\Omega\) and \(90~\Omega\) respectively. The emf and internal resistance of the cell are \(7~\text{V}\) and \(5~\Omega\) respectively. If the galvanometer resistance is \(50~\Omega\) the current drawn from the cell will be:
1. \(0.2~\text{A}\) 2. \(0.1~\text{A}\)
3. \(2.0~\text{A}\) 4. \(1.0~\text{A}\)
Subtopic:  Wheatstone Bridge |
 78%
Level 2: 60%+
AIPMT - 2013
Hints
Links

advertisementadvertisement

If the voltage across a bulb rated \((220~\text{V}\text-100~\text{W})\) drops by \(2.5\%\) of its rated value, the percentage of the rated value by which the power would decrease is:
1. \(20\%\)
2. \(2.5\%\)
3. \(5\%\)
4. \(10\%\)

Subtopic:  Heating Effects of Current |
 79%
Level 2: 60%+
AIPMT - 2012
Hints
Links