Three uncharged capacitors of capacities \(C_1, C_2~\text{and}~C_3~~\) are connected to one another as shown in the figure.

        

If points \(\mathrm{A}\)\(\mathrm{B}\), and \(\mathrm{D}\), are at potential \(V_1, V_2 ~\text{and}~V_3\) then the potential at \(\mathrm{O}\) will be:
1. \(\frac{V_1C_1+V_2C_2+V_3C_3}{C_1+C_2+C_3}\)
2. \(\frac{V_1+V_2+V_3}{C_1+C_2+C_3}\)
3. \(\frac{V_1(V_2+V_3)}{C_1(C_2+C_3)}\)
4. \(\frac{V_1V_2V_3}{C_1C_2C_3}\)

Subtopic:  Combination of Capacitors |
 90%
From NCERT
To view explanation, please take trial in the course.
NEET 2023 - Target Batch - Aryan Raj Singh
Hints
Links
To view explanation, please take trial in the course.
NEET 2023 - Target Batch - Aryan Raj Singh

Four electric charges \(+\mathrm q,\) \(+\mathrm q,\) \(-\mathrm q\) and \(-\mathrm q\) are placed at the corners of a square of side \(2\mathrm{L}\) (see figure). The electric potential at point A, mid-way between the two charges \(+\mathrm q\) and \(+\mathrm q\) is:
              

1.  14πε02qL1+15

2.  14πε02qL1-15

3.  zero

4.  14πε02qL1+5

Subtopic:  Electric Potential |
 73%
From NCERT
AIPMT - 2011
To view explanation, please take trial in the course.
NEET 2023 - Target Batch - Aryan Raj Singh
Hints
Links
To view explanation, please take trial in the course.
NEET 2023 - Target Batch - Aryan Raj Singh

The electric potential at a point in free space due to a charge \(Q\) coulomb is \(Q\times10^{11}~\text{V}\). The electric field at that point is:
1. \(4\pi \varepsilon_0 Q\times 10^{22}~\text{V/m}\)
2. \(12\pi \varepsilon_0 Q\times 10^{20}~\text{V/m}\)
3. \(4\pi \varepsilon_0 Q\times 10^{20}~\text{V/m}\)
4. \(12\pi \varepsilon_0 Q\times 10^{22}~\text{V/m}\)

Subtopic:  Relation between Field & Potential |
 72%
From NCERT
AIPMT - 2008
To view explanation, please take trial in the course.
NEET 2023 - Target Batch - Aryan Raj Singh
Hints
Links
To view explanation, please take trial in the course.
NEET 2023 - Target Batch - Aryan Raj Singh

advertisementadvertisement

An electric dipole of moment \(\vec {p} \) is lying along a uniform electric field \(\vec{E}\). The work done in rotating the dipole by \(90^{\circ}\) is:
1. \(\sqrt{2}pE\)
2. \(\frac{pE}{2}\)
3. \(2pE\)
4. \(pE\)

Subtopic:  Energy of Dipole in an External Field |
 82%
From NCERT
AIPMT - 2006
To view explanation, please take trial in the course.
NEET 2023 - Target Batch - Aryan Raj Singh
Hints
Links
To view explanation, please take trial in the course.
NEET 2023 - Target Batch - Aryan Raj Singh

\(\mathrm{A}\), \(\mathrm{B}\) and \(\mathrm{C}\) are three points in a uniform electric field. The electric potential is:

1. maximum at \(\mathrm{A}\)
2. maximum at \(\mathrm{B}\)
3. maximum at \(\mathrm{C}\)
4. same at all the three points \(\mathrm{A},\mathrm{B} ~\text{and}~\mathrm{C}\)
Subtopic:  Relation between Field & Potential |
 82%
From NCERT
NEET - 2013
To view explanation, please take trial in the course.
NEET 2023 - Target Batch - Aryan Raj Singh
Hints
Links
To view explanation, please take trial in the course.
NEET 2023 - Target Batch - Aryan Raj Singh

Three capacitors of capacitances 3 μF, 9 μF and 18 μF are connected once in series and another time in parallel. The ratio of equivalent capacitance in the two cases CsCp will be:

1. 1 : 15

2. 15 : 1

3. 1 : 1

4. 1 : 3

Subtopic:  Combination of Capacitors |
 87%
From NCERT
To view explanation, please take trial in the course.
NEET 2023 - Target Batch - Aryan Raj Singh
Hints
Links
To view explanation, please take trial in the course.
NEET 2023 - Target Batch - Aryan Raj Singh

advertisementadvertisement

Two charges q1 and q2 are placed 30 cm apart, as shown in the figure. A third charge q3 is moved along the arc of a circle of radius 40 cm from C to D. The change in the potential energy of the system is q34πε0k, where k is:

     

1. 8q2 2. 8q1
3 6q2 4. 6q1
Subtopic:  Electric Potential Energy |
 66%
From NCERT
To view explanation, please take trial in the course.
NEET 2023 - Target Batch - Aryan Raj Singh
Hints
Links
To view explanation, please take trial in the course.
NEET 2023 - Target Batch - Aryan Raj Singh

Three charges \(Q\)\(+q \) and \(+q \) are placed at the vertices of an equilateral triangle of side \(l\) as shown in the figure. If the net electrostatic energy of the system is zero, then \(Q\) is equal to:

           

1. \(-\frac{q}{2} \) 2. \(-q\)
3. \(+q\) 4. \(\text{zero}\)
Subtopic:  Electric Potential Energy |
 72%
From NCERT
To view explanation, please take trial in the course.
NEET 2023 - Target Batch - Aryan Raj Singh
Hints
Links
To view explanation, please take trial in the course.
NEET 2023 - Target Batch - Aryan Raj Singh

A cube of a metal is given a positive charge Q. For the above system, which of the following statements is true?

1. Electric potential at the surface of the cube is zero.
2. Electric potential within the cube is zero.
3. Electric field is normal to the surface of the cube.
4. Electric field varies within the cube.
Subtopic:  Equipotential Surfaces |
 77%
From NCERT
To view explanation, please take trial in the course.
NEET 2023 - Target Batch - Aryan Raj Singh
Hints
Links
To view explanation, please take trial in the course.
NEET 2023 - Target Batch - Aryan Raj Singh

advertisementadvertisement

Ten electrons are equally spaced and fixed around a circle of radius R. Relative to V = 0 at infinity, the electrostatic potential V and the electric field E at the centre C are:

1.  \(V \neq 0 \text { and } \vec{E} \neq 0\) 
2. \(V \neq 0 \text { and } \vec{E}=0\)
3. \(V=0 \text { and } \vec{E}=0\)
4. \(V=0 \text { and } \vec{E} \neq 0\)

Subtopic:  Electric Potential |
 77%
From NCERT
To view explanation, please take trial in the course.
NEET 2023 - Target Batch - Aryan Raj Singh
Hints
Links
To view explanation, please take trial in the course.
NEET 2023 - Target Batch - Aryan Raj Singh