If potential \([\text{in volts}]\) in a region is expressed as \(V[x,y,z] = 6xy-y+2yz,\) the electric field \([\text{in N/C}]\) at point \((1, 1, 0)\) is:
1. | \(- \left(3 \hat{i} + 5 \hat{j} + 3 \hat{k}\right)\) | 2. | \(- \left(6 \hat{i} + 5 \hat{j} + 2 \hat{k}\right)\) |
3. | \(- \left(2 \hat{i} + 3 \hat{j} + \hat{k}\right)\) | 4. | \(- \left(6 \hat{i} + 9 \hat{j} + \hat{k}\right)\) |
In a region, the potential is represented by \(V=(x,y,z)=6x-8xy-8y+6yz,\) where \(V\) is in volts and \(x,y,z\) are in meters. The electric force experienced by a charge of \(2\) coulomb situated at a point \((1,1,1)\) is:
1. \(6\sqrt{5}~\text{N}\)
2. \(30~\text{N}\)
3. \(24~\text{N}\)
4. \(4\sqrt{35}~\text{N}\)
\(A\), \(B\) and \(C\) are three points in a uniform electric field. The electric potential is:
1. | \(B\) | maximum at
2. | \(C\) | maximum at
3. | \(A, B\) and \(C\) | same at all the three points
4. | \(A\) | maximum at
1. | \(8~\text{V/m},\) along the negative \(x\text-\)axis |
2. | \(8~\text{V/m},\) along the positive \(x\text-\)axis |
3. | \(16~\text{V/m},\) along the negative \(x\text-\)axis |
4. | \(16~\text{V/m},\) along the positive \(x\text-\)axis |
The electric potential at a point in free space due to a charge \(Q\) coulomb is \(Q\times10^{11}~\text{V}\). The electric field at that point is:
1. \(4\pi \varepsilon_0 Q\times 10^{22}~\text{V/m}\)
2. \(12\pi \varepsilon_0 Q\times 10^{20}~\text{V/m}\)
3. \(4\pi \varepsilon_0 Q\times 10^{20}~\text{V/m}\)
4. \(12\pi \varepsilon_0 Q\times 10^{22}~\text{V/m}\)