1. | \(8~\text{V/m},\) along the negative \(x\text-\)axis |
2. | \(8~\text{V/m},\) along the positive \(x\text-\)axis |
3. | \(16~\text{V/m},\) along the negative \(x\text-\)axis |
4. | \(16~\text{V/m},\) along the positive \(x\text-\)axis |
Three charges, each \(+q\), are placed at the corners of an equilateral triangle \(ABC\) of sides \(BC\), \(AC\), and \(AB\). \(D\) and \(E\) are the mid-points of \(BC\) and \(CA\). The work done in taking a charge \(Q\) from \(D\) to \(E\) is:
1. | \(\frac{3qQ}{4\pi \varepsilon_0 a}\) | 2. | \(\frac{3qQ}{8\pi \varepsilon_0 a}\) |
3. | \(\frac{qQ}{4\pi \varepsilon_0 a}\) | 4. | \(\text{zero}\) |
Two metallic spheres of radii \(1~\text{cm}\) and \(3~\text{cm}\) are given charges of \(-1\times 10^{-2}~\text{C}\) and \(5\times 10^{-2} ~\text{C}\), respectively. If these are connected by a conducting wire, then the final charge on the bigger sphere is:
1. \(3\times 10^{-2}~ \text{C}\)
2. \(4\times 10^{-2}~\text{C}\)
3. \(1\times 10^{-2}~\text{C}\)
4. \(2\times 10^{-2}~\text{C}\)
A parallel plate air capacitor is charged to a potential difference of V volts. After disconnecting the charging battery, the distance between the plates of the capacitor is increased using an insulating handle. As a result the potential difference between the plates:
1. decreases.
2. does not change.
3. becomes zero.
4. increases.
An electric dipole of moment \(\vec {p} \) is lying along a uniform electric field \(\vec{E}.\) The work done in rotating the dipole by \(90^{\circ}\) is:
1. \(\sqrt{2}pE\)
2. \(\dfrac{pE}{2}\)
3. \(2pE\)
4. \(pE\)
Charges +q and –q are placed at points A and B, respectively; which are at a distance 2L apart. C is the midpoint between A and B. The work done in moving a charge +Q along the semicircle CRD is:
1.
2.
3.
4.
Two condensers, one of capacity \(C\) and the other of capacity \(\frac{C}2\) are connected to a \(V\) volt battery, as shown in the figure.
The energy stored in the capacitors when both condensers are fully charged will be:
1. \(2CV^2\)
2. \({1 \over4}CV^2\)
3. \({3 \over4}CV^2\)
4. \({1 \over2}CV^2\)
The energy required to charge a parallel plate condenser of plate separation, \(d\) and plate area of cross-section, \(A\) such that the uniform electric field between the plates is \(E,\) is:
1. | \(\dfrac{\varepsilon_0E^2}{2Ad}\) | 2. | \(\dfrac{\varepsilon_0E^2}{Ad}\) |
3. | \(\varepsilon_0E^2Ad\) | 4. | \(\dfrac{1}{2}\varepsilon_0E^2Ad\) |
The electric potential at a point in free space due to a charge \(Q\) coulomb is \(Q\times10^{11}~\text{V}\). The electric field at that point is:
1. \(4\pi \varepsilon_0 Q\times 10^{22}~\text{V/m}\)
2. \(12\pi \varepsilon_0 Q\times 10^{20}~\text{V/m}\)
3. \(4\pi \varepsilon_0 Q\times 10^{20}~\text{V/m}\)
4. \(12\pi \varepsilon_0 Q\times 10^{22}~\text{V/m}\)