A uniform electric field exists in a certain region of space. The potential at the following points are given (all units are in SI):
• \(A \left ( 1, 0, 0 \right )\)      \(V_{A}=2\) volt
\(B \left ( 0, 2, 0 \right )\)      \(V_{B}=4\) volt
\(C \left ( 0, 0, 2 \right )\)      \(V_{C}=6\) volt
\(D \left ( 1, 1, 0 \right )\)     \(V_{D}=-1\) volt
The component of the electric field along the \(x\text-\)axis is:
1. \(2\) V/m
2. \(8\) V/m
3. \(3\) V/m
4. \(-6\) V/m
Subtopic:  Relation between Field & Potential |
From NCERT
To view explanation, please take trial in the course.
NEET 2026 - Target Batch - Vital
Hints
To view explanation, please take trial in the course.
NEET 2026 - Target Batch - Vital

Consider an electric field of the form: \(\vec E=K(y\hat i+x\hat j)\)
where \(K\) is a constant, and \(x,y\) are the coordinates.
Statement I: If a charged particle is taken along the \(x\)-axis, no work will be done by the electric field.
Statement II: This electric field is conservative in nature i.e. it can be derived from a potential: \(V(x,y)=C-Kxy\)
 
1. Statement I is incorrect and Statement II is correct.
2. Both Statement I and Statement II are correct.
3. Both Statement I and Statement II are incorrect.
4. Statement I is correct and Statement II is incorrect.
Subtopic:  Relation between Field & Potential |
From NCERT
To view explanation, please take trial in the course.
NEET 2026 - Target Batch - Vital
Hints
To view explanation, please take trial in the course.
NEET 2026 - Target Batch - Vital