The figure shows electric field lines in which an electric dipole \(p\) is placed as shown in the figure. Which of the following statements is correct?
                          

1. The dipole will not experience any force.
2. The dipole will experience a force towards the right.
3. The dipole will experience a force towards the left.
4. The dipole will experience a force upwards.

Subtopic:  Electric Dipole |
 53%
From NCERT
To view explanation, please take trial in the course.
NEET 2026 - Target Batch - Vital
Hints
To view explanation, please take trial in the course.
NEET 2026 - Target Batch - Vital

The acceleration of an electron due to the mutual attraction between the electron and a proton when they are \(1.6~\mathring{A}\) apart is:
\(\left(\frac{1}{4 \pi \varepsilon_0}=9 \times 10^9~ \text{Nm}^2 \text{C}^{-2}\right)\)

1. \( 10^{24} ~\text{m/s}^2\) 2 \( 10^{23} ~\text{m/s}^2\)
3. \( 10^{22}~\text{m/s}^2\) 4. \( 10^{25} ~\text{m/s}^2\)
Subtopic:  Coulomb's Law |
 76%
From NCERT
NEET - 2020
To view explanation, please take trial in the course.
NEET 2026 - Target Batch - Vital
Hints
Links
To view explanation, please take trial in the course.
NEET 2026 - Target Batch - Vital

The electric field at a point on the equatorial plane at a distance \(r\) from the centre of a dipole having dipole moment \(\overrightarrow{P}\) is given by:
(\(r\gg\) separation of two charges forming the dipole, \(\varepsilon_{0} =\) permittivity of free space)
1. \(\overrightarrow{E}=\dfrac{\overrightarrow{P}}{4\pi \varepsilon _{0}r^{3}}\) 2. \(\overrightarrow{E}=\dfrac{2\overrightarrow{P}}{\pi \varepsilon _{0}r^{3}}\)
3. \(\overrightarrow{E}=-\dfrac{\overrightarrow{P}}{4\pi \varepsilon _{0}r^{2}}\) 4. \(\overrightarrow{E}=-\dfrac{\overrightarrow{P}}{4\pi \varepsilon _{0}r^{3}}\)
Subtopic:  Electric Dipole |
 65%
From NCERT
NEET - 2020
To view explanation, please take trial in the course.
NEET 2026 - Target Batch - Vital
Hints
Links
To view explanation, please take trial in the course.
NEET 2026 - Target Batch - Vital

advertisementadvertisement

A charge \(q\) is placed in a uniform electric field \(E.\) If it is released, then the kinetic energy of the charge after travelling distance \(y\) will be:

1. \(qEy\) 2. \(2qEy\)
3. qEy2 4. qEy
Subtopic:  Electric Field |
 77%
From NCERT
AIPMT - 1998
To view explanation, please take trial in the course.
NEET 2026 - Target Batch - Vital
Hints
Links
To view explanation, please take trial in the course.
NEET 2026 - Target Batch - Vital

The electric field at the equator of a dipole is \(E.\) If the strength of the dipole and distance are now doubled, then the electric field will be:

1. \(E/2\) 2. \(E/8\)
3. \(E/4\) 4. \(E\)
Subtopic:  Electric Dipole |
 69%
From NCERT
AIPMT - 1998
To view explanation, please take trial in the course.
NEET 2026 - Target Batch - Vital
Hints
Links
To view explanation, please take trial in the course.
NEET 2026 - Target Batch - Vital

In the Millikan oil drop experiment, a charged drop falls with a terminal velocity \(v.\) If an electric field \(E\) is applied vertically upwards it moves with terminal velocity \(2v\) in the upward direction. If the electric field reduces to \(\frac{E}{2}\) then its terminal velocity will be:
1. \(\frac{v}{2}\)
2. \(v\)
3. \(\frac{3v}{2}\)
4. \(2v\)

Subtopic:  Electric Field |
From NCERT
AIPMT - 1999
To view explanation, please take trial in the course.
NEET 2026 - Target Batch - Vital
Hints
Links
To view explanation, please take trial in the course.
NEET 2026 - Target Batch - Vital

advertisementadvertisement

Refer to the arrangement of charges in the figure and a Gaussian surface of a radius \(R\) with \(Q\) at the centre. Then:

(a) total flux through the surface of the sphere is \(\frac{-Q}{\varepsilon_0}.\)
(b) field on the surface of the sphere is \(\frac{-Q}{4\pi \varepsilon_0 R^2}.\)
(c) flux through the surface of the sphere due to \(5Q\) is zero.
(d) field on the surface of the sphere due to \(-2Q\) is the same everywhere.

Choose the correct statement(s): 

1. (a) and (d) 2. (a) and (c)
3. (b) and (d) 4. (c) and (d)
Subtopic:  Gauss's Law |
 74%
From NCERT
To view explanation, please take trial in the course.
NEET 2026 - Target Batch - Vital
Hints
Links
To view explanation, please take trial in the course.
NEET 2026 - Target Batch - Vital

If there were only one type of charge in the universe, then:
(a) \(\oint_s {E} . {dS} \neq 0\) on any surface 
(b) \(\oint_s {E} . {dS} = 0\) if the charge is outside the surface. 
(c) \(\oint_s {E} . {dS}\) could not be defined.
(d) \(\oint_s {E} . {dS}=\frac{q}{\epsilon_0}\) if charges of magnitude \(q\) were inside the surface.
Choose the correct statement(s):
 
1. (a) and (d) 2. (a) and (c)
3. (b) and (d) 4. (c) and (d)
Subtopic:  Gauss's Law |
 74%
From NCERT
To view explanation, please take trial in the course.
NEET 2026 - Target Batch - Vital
Hints
Links
To view explanation, please take trial in the course.
NEET 2026 - Target Batch - Vital

Two point dipoles of dipole moment \(\vec{p}_{1}\) and \(\vec{p}_{2}\) are at a distance \(x\) from each other and \(\vec{p}_{1} \left|\right| \vec{p}_{2}\). The force between the dipole is:
1. \(\frac{1}{4 π\varepsilon_{0}} \frac{4 p_{1} p_{2}}{x^{4}}\)
2. \(\frac{1}{4 π\varepsilon_{0}} \frac{3 p_{1} p_{2}}{x^{3}}\)
3. \(\frac{1}{4π\varepsilon_{0}} \frac{6 p_{1} p_{2}}{x^{4}}\)
4. \(\frac{1}{4 π\varepsilon_{0}} \frac{8 p_{1} p_{2}}{x^{4}}\)

Subtopic:  Electric Dipole |
To view explanation, please take trial in the course.
NEET 2026 - Target Batch - Vital
Hints
Links
To view explanation, please take trial in the course.
NEET 2026 - Target Batch - Vital

advertisementadvertisement

A hollow metal sphere of radius \(R\) is uniformly charged. The electric field due to the sphere at a distance \(r\) from the centre:

1. decreases as \(r\) increases for \(r<R\) and for \(r>R\).
2. increases as \(r\) increases for \(r<R\) and for \(r>R\).
3. is zero as \(r\) increases for \(r<R\), decreases as \(r\) increases for \(r>R\).
4. is zero as \(r\) increases for \(r<R\), increases as \(r\) increases for \(r>R\).
Subtopic:  Gauss's Law |
 82%
From NCERT
NEET - 2019
To view explanation, please take trial in the course.
NEET 2026 - Target Batch - Vital
Hints
Links
To view explanation, please take trial in the course.
NEET 2026 - Target Batch - Vital