The mean free path of electrons in a metal is \(4\times 10^{-8}~\text{m}\). The electric field which can give an average of \(2~\text{eV}\) energy to an electron in the metal will be in units of Vm-1:
1. \(8\times 10^{7}\)
2. \(5\times 10^{-11}\)
3. \(8\times 10^{-11}\)
4. \(5\times 10^{7}\)

Subtopic:  Electric Field |
From NCERT
AIPMT - 2009
To view explanation, please take trial in the course.
NEET 2025 - Target Batch
Hints
Links
To view explanation, please take trial in the course.
NEET 2025 - Target Batch

A thin conducting ring of radius \(R\) is given a charge \(+Q.\) The electric field at the centre \(O\) of the ring due to the charge on the part \(AKB\) of the ring is \(E.\) The electric field at the centre due to the charge on the part \(ACDB\) of the ring is:

               

1. \(3E\) along \(KO\)
2. \(E\) along \(OK\)
3. \(E\) along \(KO\)
4. \(3E\) along \(OK\)

Subtopic:  Electric Field |
 75%
From NCERT
AIPMT - 2008
To view explanation, please take trial in the course.
NEET 2025 - Target Batch
Hints
Links
To view explanation, please take trial in the course.
NEET 2025 - Target Batch

Three-point charges \(+q\), \(-2q\) and \(+q\) are placed at points \((x=0,y=a,z=0)\)\((x=0, y=0,z=0)\) and \((x=a, y=0, z=0)\), respectively. The magnitude and direction of the electric dipole moment vector of this charge assembly are:

1. \(\sqrt{2}qa\) along \(+y\) direction
2. \(\sqrt{2}qa\) along the line joining points \((x=0,y=0,z=0)\) and \((x=a,y=a,z=0)\)
3. \(qa\) along the line joining points \((x=0,y=0,z=0)\) and \((x=a,y=a,z=0)\)
4. \(\sqrt{2}qa\) along \(+x\) direction
Subtopic:  Electric Dipole |
 84%
From NCERT
AIPMT - 2007
To view explanation, please take trial in the course.
NEET 2025 - Target Batch
Hints
Links
To view explanation, please take trial in the course.
NEET 2025 - Target Batch

advertisementadvertisement

A hollow cylinder has a charge \(q\) coulomb within it (at the geometrical centre). If \(\phi\) is the electric flux in units of Volt-meter associated with the curved surface \(B,\) the flux linked with the plane surface \(A\) in units of volt-meter will be: 
           
1. \(\frac{1}{2}\left(\frac{q}{\varepsilon_0}-\phi\right)\)
2. \(\frac{q}{2\varepsilon_0}\)
3. \(\frac{\phi}{3}\)
4. \(\frac{q}{\varepsilon_0}-\phi\)

Subtopic:  Gauss's Law |
 74%
From NCERT
AIPMT - 2007
To view explanation, please take trial in the course.
NEET 2025 - Target Batch
Hints
Links
To view explanation, please take trial in the course.
NEET 2025 - Target Batch

A square surface of side \(L\) (m) is in the plane of the paper. A uniform electric field \(\vec{E}\) (V/m), also in the plane of the paper, is limited only to the lower half of the square surface, (see figure). The electric flux in SI units associated with the surface is:     
  

1. \(EL^2/ ( 2ε_0 )\) 2.  \(EL^2 / 2\)
3. zero 4. \(EL^2\)
Subtopic:  Gauss's Law |
 81%
From NCERT
AIPMT - 2006
To view explanation, please take trial in the course.
NEET 2025 - Target Batch
Hints
Links
To view explanation, please take trial in the course.
NEET 2025 - Target Batch

A square surface of side \(L\) (metre) in the plane of the paper is placed in a uniform electric field \(E\) (volt/m) acting along the same plane at an angle θ with the horizontal side of the square as shown in the figure. The electric flux linked to the surface in the unit of V-m is:
     

1. \(EL^{2}\) 2. \(EL^{2} cos\theta \)
3. \(EL^{2} sin\theta \) 4. \(0\)
Subtopic:  Electric Field |
 74%
From NCERT
AIPMT - 2010
To view explanation, please take trial in the course.
NEET 2025 - Target Batch
Hints
Links
To view explanation, please take trial in the course.
NEET 2025 - Target Batch

advertisementadvertisement

Two positive ions, each carrying a charge \(q\), are separated by a distance \(d\). If \(F\) is the force of repulsion between the ions, the number of electrons missing from each ion will be:
(\(e\) is the charge on an electron)

1. \(\frac{4 \pi \varepsilon_{0} F d^{2}}{e^{2}}\) 2. \(\sqrt{\frac{4 \pi \varepsilon_{0} F d^{2}}{d^{2}}}\)
3. \(\sqrt{\frac{4 \pi \varepsilon_{0} F d^{2}}{e^{2}}}\) 4. \(\frac{4 \pi \varepsilon_{0} F d^{2}}{q^{2}}\)
Subtopic:  Coulomb's Law |
 77%
From NCERT
AIPMT - 2010
To view explanation, please take trial in the course.
NEET 2025 - Target Batch
Hints
Links
To view explanation, please take trial in the course.
NEET 2025 - Target Batch

A charge \(Q\) is enclosed by a Gaussian spherical surface of radius \(R\). If the radius is doubled, then the outward electric flux will:
1. be reduced to half
2. remain the same
3. be doubled
4. increase four times
Subtopic:  Gauss's Law |
 88%
From NCERT
AIPMT - 2011
To view explanation, please take trial in the course.
NEET 2025 - Target Batch
Hints
Links
To view explanation, please take trial in the course.
NEET 2025 - Target Batch

What is the flux through a cube of side \(a,\) if a point charge of \(q\) is placed at one of its corners?
1. \(\frac{2q}{\varepsilon_0}\)
2. \(\frac{q}{8\varepsilon_0}\)
3. \(\frac{q}{\varepsilon_0}\)
4. \(\frac{q}{2\varepsilon_0}\)

Subtopic:  Gauss's Law |
 88%
From NCERT
AIPMT - 2012
To view explanation, please take trial in the course.
NEET 2025 - Target Batch
Hints
Links
To view explanation, please take trial in the course.
NEET 2025 - Target Batch

advertisementadvertisement

Two pith balls carrying equal charges are suspended from a common point by strings of equal length, the equilibrium separation between them is \(r\) (as shown in Fig. I). Now, as shown in Fig. II, the strings are rigidly clamped at half the height. The equilibrium separation between the balls now becomes:
     
1. \(\frac{r}{\sqrt[3]{2}}\)
2. \(\frac{r}{\sqrt[2]{2}}\)
3. \(\frac{2r}{3}\)
4. none of the above

Subtopic:  Coulomb's Law |
 70%
From NCERT
AIPMT - 2013
To view explanation, please take trial in the course.
NEET 2025 - Target Batch
Hints
Links
To view explanation, please take trial in the course.
NEET 2025 - Target Batch