Who evaluated the mass of electron indirectly with help of charge:
1. Thomson
2. Millikan
3. Rutherford
4. Newton

Subtopic:  Electric Charge |
 79%
Level 2: 60%+
AIPMT - 2000
Hints
Links

A charge \(q\) is placed in a uniform electric field \(E.\) If it is released, then the kinetic energy of the charge after travelling distance \(y\) will be:

1. \(qEy\) 2. \(2qEy\)
3. qEy2 4. qEy
Subtopic:  Electric Field |
 78%
Level 2: 60%+
AIPMT - 1998
Hints
Links

The electric field at the equator of a dipole is \(E.\) If the strength of the dipole and distance are now doubled, then the electric field will be:

1. \(E/2\) 2. \(E/8\)
3. \(E/4\) 4. \(E\)
Subtopic:  Electric Dipole |
 69%
Level 2: 60%+
AIPMT - 1998
Hints
Links

advertisementadvertisement

A point \(Q\) lies on the perpendicular bisector of an electric dipole of dipole moment \(p.\) If the distance of \(Q\) from the dipole is \(r\) (much larger than the size of the dipole), then the electric field at \(Q\) is proportional to:
1. \(p^{2}\) and \(r^{-3}\)
2. \(p\) and \(r^{-2}\)
3. \(p^{-1}\) and \(r^{-2}\)
4. \(p\) and \(r^{-3}\)

Subtopic:  Electric Dipole |
 87%
Level 1: 80%+
AIPMT - 1998
Hints
Links

The unit of permittivity of free space \(\varepsilon_0\) is:
1. Newton metre2 / Coulomb2
2. Coulomb2 /Newton metre2
3. Coulomb2/ (Newton metre)2
4. Coulomb/Newton metre 

Subtopic:  Coulomb's Law |
 74%
Level 2: 60%+
AIPMT - 2004
Hints
Links

In the Millikan oil drop experiment, a charged drop falls with a terminal velocity \(v.\) If an electric field \(E\) is applied vertically upwards it moves with terminal velocity \(2v\) in the upward direction. If the electric field reduces to \(\frac{E}{2}\) then its terminal velocity will be:
1. \(\frac{v}{2}\)
2. \(v\)
3. \(\frac{3v}{2}\)
4. \(2v\)

Subtopic:  Electric Field |
Level 3: 35%-60%
AIPMT - 1999
Hints
Links

advertisementadvertisement

If a charge \(Q~\mu\text{C}\) is placed at the centre of the cube, the flux (In SI unit) coming out from any surface will be:
1. \(\dfrac{Q}{6\varepsilon_0}\times10^{-6}\) 2. \(\dfrac{Q}{6\varepsilon_0}\times10^{-3}\)
3. \(\dfrac{Q}{2\varepsilon_0}\) 4. \(\dfrac{Q}{8\varepsilon_0}\)
Subtopic:  Gauss's Law |
 89%
Level 1: 80%+
AIPMT - 2001
Hints
Links

A dipole with moment \(\vec p\) is placed in a uniform electric field \(\vec E\). The torque acting on the dipole is given by:
1. \(\vec{\tau }=\vec{p}\cdot \vec{E}\)
2. \(\vec{\tau }=\vec{p} \times \vec{E}\)
3. \(\vec{\tau }=\vec{p}+ \vec{E}\)
4. \(\vec{\tau }=\vec{p}- \vec{E} \)

Subtopic:  Electric Dipole |
 91%
Level 1: 80%+
AIPMT - 2001
Hints
Links

A charge \(q\) is located at the centre of a cube. The electric flux through any face is:
1. \(\frac{2\pi q}{6(4\pi \varepsilon_0)}\)
2. \(\frac{4\pi q}{6(4\pi \varepsilon_0)}\)
3. \(\frac{\pi q}{6(4\pi \varepsilon_0)}\)
4. \(\frac{ q}{6(4\pi \varepsilon_0)}\)

Subtopic:  Gauss's Law |
 69%
Level 2: 60%+
AIPMT - 2003
Hints
Links

advertisementadvertisement

If a charge \(Q\) is situated at the corner of a cube, the electric flux passing through all six faces of the cube is:

1. \(\frac{Q}{6\varepsilon_0}\) 2. \(\frac{Q}{8\varepsilon_0}\)
3. \(\frac{Q}{\varepsilon_0}\) 4. \(\frac{Q}{2\varepsilon_0}\)

Subtopic:  Gauss's Law |
 69%
Level 2: 60%+
AIPMT - 2000
Hints
Links