A string of length \(l\) is fixed at both ends and is vibrating in second harmonic. The amplitude at antinode is \(2\) mm. The amplitude of a particle at a distance \(l/8\) from the fixed end is:
1. \(2\sqrt2~\text{mm}\)
2. \(4~\text{mm}\)
3. \(\sqrt2~\text{mm}\)
4. \(2\sqrt3~\text{mm}\)
1. | \(3:1\) | 2. | \(1:2\) |
3. | \(2:1\) | 4. | \(1:3\) |
1. | \(8:9\) | 2. | \(9:7\) |
3. | \(9:8\) | 4. | \(7:9\) |
If the equation of a wave is represented by: \(y=10^{-4}~ \mathrm{sin}\left(100t-\dfrac{x}{10}\right)~\text m,\) where \(x \) is in meters and \(t\) in seconds, then the velocity of the wave will be:
1. | \(100\) m/s | 2. | \(4\) m/s |
3. | \(1000\) m/s | 4. | \(0\) m/s |
Two waves have the following equations:
If in the resultant wave, the frequency and amplitude remain equal to the amplitude of superimposing waves, then the phase difference between them will be:
1.
2.
3.
4.
If the tension and diameter of a sonometer wire of fundamental frequency n are doubled and density is halved, then its fundamental frequency will become:
1.
2.
3. n
4.
1. | \({y}=0.2 \sin \left[2 \pi\left(6{t}+\frac{x}{60}\right)\right]\) |
2. | \({y}=0.2 \sin \left[ \pi\left(6{t}+\frac{x}{60}\right)\right]\) |
3. | \({y}=0.2 \sin \left[2 \pi\left(6{t}-\frac{x}{60}\right)\right]\) |
4. | \(y=0.2 \sin \left[ \pi\left(6{t}-\frac{x}{60}\right)\right]\) |
The phase difference between two waves, represented by
\(y_1= 10^{-6}\sin \left\{100t+\left(\frac{x}{50}\right) +0.5\right\}~\text{m}\)
\(y_2= 10^{-6}\cos \left\{100t+\left(\frac{x}{50}\right) \right\}~\text{m}\)
where \(x\) is expressed in metres and \(t\) is expressed in seconds, is approximate:
1. \(2.07~\text{radians}\)
2. \(0.5~\text{radians}\)
3. \(1.5~\text{radians}\)
4. \(1.07~\text{radians}\)