For a wave $$y=y_0 \sin (\omega t-k x)$$, for what value of $$\lambda$$ is the maximum particle velocity equal to two times the wave velocity?
1. $$\pi y_0$$
2. $$2\pi y_0$$
3. $$\pi y_0/2$$
4. $$4\pi y_0$$

Subtopic:  Wave Motion |
73%
From NCERT
AIPMT - 1998
To view explanation, please take trial in the course.
NEET 2025 - Target Batch
Hints
To view explanation, please take trial in the course.
NEET 2025 - Target Batch

If the equation of a wave is represented by:

$y$ $=$ ${10}^{-4}$ $\mathrm{sin}\left(100t$ $-$ $\frac{x}{10}\right)m$, then the velocity of wave will be:
1.  100 m/s
2.  4 m/s
3.  1000 m/s
4.  0.00 m/s

Subtopic:  Wave Motion |
89%
From NCERT
AIPMT - 2001
To view explanation, please take trial in the course.
NEET 2025 - Target Batch
Hints
To view explanation, please take trial in the course.
NEET 2025 - Target Batch

If a wave is travelling in a positive X-direction with A = 0.2 m, velocity = 360 m/s, and λ = 60 m, then the correct expression for the wave will be:

 1 $$\mathrm{y}=0.2 \sin \left[2 \pi\left(6 \mathrm{t}+\frac{\mathrm{x}}{60}\right)\right]$$ 2 $$\mathrm{y}=0.2 \sin \left[ \pi\left(6 \mathrm{t}+\frac{\mathrm{x}}{60}\right)\right]$$ 3 $$\mathrm{y}=0.2 \sin \left[2 \pi\left(6 \mathrm{t}-\frac{\mathrm{x}}{60}\right)\right]$$ 4 $$\mathrm{y}=0.2 \sin \left[ \pi\left(6 \mathrm{t}-\frac{\mathrm{x}}{60}\right)\right]$$
Subtopic:  Wave Motion |
85%
From NCERT
AIPMT - 2002
To view explanation, please take trial in the course.
NEET 2025 - Target Batch
Hints
To view explanation, please take trial in the course.
NEET 2025 - Target Batch

The phase difference between two waves, represented by
$\begin{array}{l}{\mathrm{y}}_{1}={10}^{-6}\mathrm{sin}\left\{100\mathrm{t}+\left(\mathrm{x}/50\right)+0.5\right\}\mathrm{m}\\ {\mathrm{y}}_{2}={10}^{-6}\mathrm{cos}\left\{100\mathrm{t}+\left(\frac{\mathrm{x}}{50}\right)\right\}\mathrm{m}\end{array}$
where X is expressed in metres and t is expressed in seconds, is approximate: