If the time of mean position from amplitude (extreme) position is 6 seconds, then the frequency of SHM will be:

1. \(0.01\) Hz 2. \(0.02\) Hz
3. \(0.03\) Hz 4. \(0.04\) Hz

Subtopic:  Simple Harmonic Motion |
 68%
From NCERT
AIPMT - 1998
To view explanation, please take trial in the course.
NEET 2023 - Target Batch - Aryan Raj Singh
Hints
To view explanation, please take trial in the course.
NEET 2023 - Target Batch - Aryan Raj Singh

Two spherical bobs of masses \(M_A\) and \(M_B\) are hung vertically from two strings of length \(l_A\) and \(l_B\) respectively. If they are executing SHM with frequency as per the relation \(f_A=2f_B,\) Then: 
1. lA=lB4

2. lA=4lB

3. lA=2lB & MA=2MB

4. lA=lB2 & MA=MB2

Subtopic:  Angular SHM |
 72%
From NCERT
AIPMT - 2000
To view explanation, please take trial in the course.
NEET 2023 - Target Batch - Aryan Raj Singh
Hints
To view explanation, please take trial in the course.
NEET 2023 - Target Batch - Aryan Raj Singh

A spring elongates by a length 'L' when a mass 'M' is suspended to it. Now a tiny mass 'm' is attached to the mass 'M' and then released. The new time period of oscillation will be:

1.  \(2 \pi \sqrt{\frac{\left(\right. M   +   m \left.\right) l}{Mg}}\)

2. \(2 \pi \sqrt{\frac{ml}{Mg}}\)

3. \(2 \pi \sqrt{L   /   g}\)

4. \(2 \pi \sqrt{\frac{Ml}{\left(\right. m   +   M \left.\right) g}}\)

Subtopic:  Spring mass system |
 59%
From NCERT
AIPMT - 1999
To view explanation, please take trial in the course.
NEET 2023 - Target Batch - Aryan Raj Singh
Hints
To view explanation, please take trial in the course.
NEET 2023 - Target Batch - Aryan Raj Singh

advertisementadvertisement

The frequency of a simple pendulum in a free-falling lift will be:
1. zero
2. infinite
3. can't say
4. finite

Subtopic:  Angular SHM |
 67%
From NCERT
AIPMT - 1999
To view explanation, please take trial in the course.
NEET 2023 - Target Batch - Aryan Raj Singh
Hints
To view explanation, please take trial in the course.
NEET 2023 - Target Batch - Aryan Raj Singh

When a mass is suspended separately by two different springs, in successive order, then the time period of oscillations is \(t _1\) and \(t_2\) respectively. If it is connected by both springs as shown in the figure below, then the time period of oscillation becomes \(t_0.\) The correct relation between \(t_0,\) \(t_1\) & \(t_2\) is:

           

1. t02=t12+t22

2. t0-2=t1-2+t2-2

3. t0-1=t1-1+t2-1

4. t0=t1+t2

Subtopic:  Combination of Springs |
 68%
From NCERT
AIPMT - 2002
To view explanation, please take trial in the course.
NEET 2023 - Target Batch - Aryan Raj Singh
Hints
To view explanation, please take trial in the course.
NEET 2023 - Target Batch - Aryan Raj Singh

A particle of mass m oscillates with simple harmonic motion between points x1 and x2, the equilibrium position being O. Its potential energy is plotted. It will be as given below in the graph:

1. 2.
3. 4.
Subtopic:  Energy of SHM |
 84%
From NCERT
AIPMT - 2003
To view explanation, please take trial in the course.
NEET 2023 - Target Batch - Aryan Raj Singh
Hints
To view explanation, please take trial in the course.
NEET 2023 - Target Batch - Aryan Raj Singh

advertisementadvertisement

The potential energy of a simple harmonic oscillator, when the particle is halfway to its endpoint, will be:
1. \(\frac{2E}{3}\)
2. \(\frac{E}{8}\)
3. \(\frac{E}{4}\)
4. \(\frac{E}{2}\)

Subtopic:  Energy of SHM |
 79%
From NCERT
AIPMT - 2003
To view explanation, please take trial in the course.
NEET 2023 - Target Batch - Aryan Raj Singh
Hints
To view explanation, please take trial in the course.
NEET 2023 - Target Batch - Aryan Raj Singh

A body oscillates with SHM according to the equation (in SI units), x = 5 cos [2π t + π/4]. At t = 1.5 s, acceleration of the body will be:

1. \(140 \mathrm{~cm} / \mathrm{s}^2 \) 2. \(160 \mathrm{~m} / \mathrm{s}^2 \)
3. \(140 \mathrm{~m} / \mathrm{s}^2 \) 4. \(14 \mathrm{~m} / \mathrm{s}^2\)
Subtopic:  Linear SHM |
 57%
From NCERT
To view explanation, please take trial in the course.
NEET 2023 - Target Batch - Aryan Raj Singh
Hints
To view explanation, please take trial in the course.
NEET 2023 - Target Batch - Aryan Raj Singh

From the given functions, identify the function which represents a periodic motion:

1. \(e^{\omega t}\) 2. \(\text{log}_e(\omega t)\)
3. \(\text{sin}\omega t+ \text{cos}\omega t\) 4. \(e^{-\omega t}\)

Subtopic:  Types of Motion |
 88%
From NCERT
NEET - 2020
To view explanation, please take trial in the course.
NEET 2023 - Target Batch - Aryan Raj Singh
Hints
To view explanation, please take trial in the course.
NEET 2023 - Target Batch - Aryan Raj Singh

advertisementadvertisement

Displacement versus time curve for a particle executing SHM is shown in the figure. Choose the correct statement/s.

1. Phase of the oscillator is the same at t =0 s and t = 2 s.
2. Phase of the oscillator is the same at t =2 s and t=6 s.
3. Phase of the oscillator is the same at t = 1 s and t=7 s.
4. Phase of the oscillator is the same at t=1 s and t=5 s.

1. 1, 2 and 4 2. 1 and 3
3. 2 and 4 4. 3 and 4
Subtopic:  Simple Harmonic Motion |
 72%
From NCERT
To view explanation, please take trial in the course.
NEET 2023 - Target Batch - Aryan Raj Singh
Hints
To view explanation, please take trial in the course.
NEET 2023 - Target Batch - Aryan Raj Singh