The displacement-time graph of a particle executing SHM is shown in the figure. Its displacement equation will be: (Time period = 2 second)

1. x=10 sinπt+π6

2. x=10 sin(πt)

3. x=10 cos(πt)

4. x=5 sinπt+π6

Subtopic:  Linear SHM |
 63%
From NCERT
To view explanation, please take trial in the course.
NEET 2023 - Target Batch - Aryan Raj Singh
Hints
To view explanation, please take trial in the course.
NEET 2023 - Target Batch - Aryan Raj Singh

All the surfaces are smooth and the system, given below, is oscillating with an amplitude \(\mathrm{A}.\) What is the extension of spring having spring constant \(\mathrm{k_1},\) when the block is at the extreme position?
             

1. \({k_1 \over k_1+k_2} \text{A}\) 2. \({k_2A \over k_1+k_2}\)
3. \(\mathrm{A}\) 4. \(\text{A} \over 2\)
Subtopic:  Combination of Springs |
 66%
From NCERT
To view explanation, please take trial in the course.
NEET 2023 - Target Batch - Aryan Raj Singh
Hints
To view explanation, please take trial in the course.
NEET 2023 - Target Batch - Aryan Raj Singh

The amplitude of a simple harmonic oscillator is \(A\) and speed at the mean position is \(v_0\) .The speed of the oscillator at the position \(x={A \over \sqrt{3}}\) will be: 

1. \(2v_0 \over \sqrt{3}\) 2. \(\sqrt{2}v_0 \over 3\)
3. \({2 \over 3}v_0\) 4. \(\sqrt{2}v_0 \over \sqrt{3}\)
Subtopic:  Linear SHM |
 76%
From NCERT
To view explanation, please take trial in the course.
NEET 2023 - Target Batch - Aryan Raj Singh
Hints
To view explanation, please take trial in the course.
NEET 2023 - Target Batch - Aryan Raj Singh

advertisementadvertisement

A spring having a spring constant of 1200 N/m is mounted on a horizontal table as shown in the figure. A mass of 3 kg is attached to the free end of the spring. The mass is then pulled sideways to a distance of 2.0 cm and released. The frequency of oscillations will be:
    

1. \(3.0~\text{s}^{-1}\) 2. \(2.7~\text{s}^{-1}\)
3. \(1.2~\text{s}^{-1}\) 4. \(3.2~\text{s}^{-1}\)

Subtopic:  Spring mass system |
 72%
From NCERT
To view explanation, please take trial in the course.
NEET 2023 - Target Batch - Aryan Raj Singh
Hints
To view explanation, please take trial in the course.
NEET 2023 - Target Batch - Aryan Raj Singh

Identify the correct definition:

1. If after every certain interval of time, a particle repeats its motion, then the motion is called periodic motion.
2. To and fro motion of a particle is called oscillatory motion.
3. Oscillatory motion described in terms of single sine and cosine functions is called simple harmonic motion.
4. All of the above

Subtopic:  Types of Motion |
 92%
From NCERT
To view explanation, please take trial in the course.
NEET 2023 - Target Batch - Aryan Raj Singh
Hints
To view explanation, please take trial in the course.
NEET 2023 - Target Batch - Aryan Raj Singh

The displacement \( x\) of a particle varies with time \(t\) as \(x = A sin\left (\frac{2\pi t}{T} +\frac{\pi}{3} \right)\)The time taken by the particle to reach from \(x = \frac{A}{2} \) to \(x = -\frac{A}{2} \) will be:

1. \(\frac{T}{2}\) 2. \(\frac{T}{3}\)
3. \(\frac{T}{12}\) 4. \(\frac{T}{6}\)

Subtopic:  Phasor Diagram |
From NCERT
To view explanation, please take trial in the course.
NEET 2023 - Target Batch - Aryan Raj Singh
Hints
To view explanation, please take trial in the course.
NEET 2023 - Target Batch - Aryan Raj Singh

advertisementadvertisement

Equation of a simple harmonic motion is  given by x = asinωt. For which value of x, kinetic energy is equal to the potential energy?

1.  x = ± a

2.  x = ± a2

3.  x = ± a2

4.  x = ± 3a2

Subtopic:  Energy of SHM |
 82%
From NCERT
To view explanation, please take trial in the course.
NEET 2023 - Target Batch - Aryan Raj Singh
Hints
To view explanation, please take trial in the course.
NEET 2023 - Target Batch - Aryan Raj Singh

All the surfaces are smooth and springs are ideal. If a block of mass \(m\) is given the velocity \(v_0\) in the right direction, then the time period of the block shown in the figure will be:

                       
1. \(\frac{12l}{v_0}\)
2. \(\frac{2l}{v_0}+ \frac{3\pi}{2}\sqrt{\frac{m}{k}}\)
3. \(\frac{4l}{v_0}+ \frac{3\pi}{2}\sqrt{\frac{m}{k}}\)
4. \( \frac{\pi}{2}\sqrt{\frac{m}{k}}\)

Subtopic:  Spring mass system |
 52%
From NCERT
To view explanation, please take trial in the course.
NEET 2023 - Target Batch - Aryan Raj Singh
Hints
To view explanation, please take trial in the course.
NEET 2023 - Target Batch - Aryan Raj Singh

A particle is attached to a vertical spring and pulled down a distance of 0.01 m below its mean position and released. If its initial acceleration is 0.16 m/s2, then its time period in seconds will be:

1.  π

2.  π2

3.  π4

4.  2π

Subtopic:  Spring mass system |
 88%
From NCERT
To view explanation, please take trial in the course.
NEET 2023 - Target Batch - Aryan Raj Singh
Hints
To view explanation, please take trial in the course.
NEET 2023 - Target Batch - Aryan Raj Singh

advertisementadvertisement

The time periods for the figures (a) and (b) are T1 and T2 respectively. If all surfaces shown below are smooth, then the ratio T1T2 will be:
   

1.  1: 3

2.  1: 1

3.  2: 1

4.  3: 2

Subtopic:  Spring mass system |
 81%
From NCERT
To view explanation, please take trial in the course.
NEET 2023 - Target Batch - Aryan Raj Singh
Hints
To view explanation, please take trial in the course.
NEET 2023 - Target Batch - Aryan Raj Singh