1. | the gravity of the earth | 2. | the mass of the block |
3. | spring constant | 4. | both (2) & (3) |
1. | \(2n\) | 2. | \(n/2\) |
3. | \(n\) | 4. | none of the above |
A spring having a spring constant of \(1200\) N/m is mounted on a horizontal table as shown in the figure. A mass of \(3\) kg is attached to the free end of the spring. The mass is then pulled sideways to a distance of \(2.0\) cm and released. The frequency of oscillations will be:
1. | \(3.0~\text{s}^{-1}\) | 2. | \(2.7~\text{s}^{-1}\) |
3. | \(1.2~\text{s}^{-1}\) | 4. | \(3.2~\text{s}^{-1}\) |
One end of a spring of force constant \(k\) is fixed to a vertical wall and the other to a block of mass \(m\) resting on a smooth horizontal surface. There is another wall at a distance \(x_0\) from the block. The spring is then compressed by \(2x_0\)
1. | \(\frac{1}{6} \pi \sqrt{ \frac{k}{m}}\) | 2. | \( \sqrt{\frac{k}{m}}\) |
3. | \(\frac{2\pi}{3} \sqrt{ \frac{m}{k}}\) | 4. | \(\frac{\pi}{4} \sqrt{ \frac{k}{m}}\) |
The time period of a mass suspended from a spring is \(T\). If the spring is cut into four equal parts and the same mass is suspended from one of the parts, then the new time period will be:
1. \(\frac{T}{4}\)
2. \(T\)
3. \(\frac{T}{2}\)
4. \(2T\)
An ideal spring with spring-constant K is hung from the ceiling and a block of mass M is attached to its lower end. The mass is released with the spring initially un-stretched. Then the maximum extension in the spring will be:
1. 4 Mg/K
2. 2 Mg/K
3. Mg/K
4. Mg/2K
A spring elongates by a length 'L' when a mass 'M' is suspended to it. Now a tiny mass 'm' is attached to the mass 'M' and then released. The new time period of oscillation will be:
1. \(2 \pi \sqrt{\frac{\left(\right. M + m \left.\right) l}{Mg}}\)
2. \(2 \pi \sqrt{\frac{ml}{Mg}}\)
3. \(2 \pi \sqrt{L / g}\)
4. \(2 \pi \sqrt{\frac{Ml}{\left(\right. m + M \left.\right) g}}\)