What is the graph between volume and temperature in Charle's law?
1. An ellipse
2. A circle
3. A straight line
4. A parabola
Two vessels separately contain two ideal gases \(A\) and \(B\) at the same temperature, the pressure of \(A\) being twice that of \(B.\) Under such conditions, the density of \(A\) is found to be \(1.5\) times the density of \(B.\) The ratio of molecular weight of \(A\) and \(B\) is:
1. | \(\dfrac{2}{3}\) | 2. | \(\dfrac{3}{4}\) |
3. | \(2\) | 4. | \(\dfrac{1}{2}\) |
The figure below shows the graph of pressure and volume of a gas at two temperatures \(T_1\) and \(T_2.\) Which one, of the following, inferences is correct?
1. | \(T_1>T_2\) |
2. | \(T_1=T_2\) |
3. | \(T_1<T_2\) |
4. | No inference can be drawn |
The volume \(V\) versus temperature \(T\) graph for a certain amount of a perfect gas at two pressures \(P_1\) and
\(P_2\) are shown in the figure.
Here:
1. | \({P}_1<{P}_2\) |
2. | \({P}_1>{P}_2\) |
3. | \({P}_1={P}_2\) |
4. | Pressures can’t be related |
Volume, pressure, and temperature of an ideal gas are \(V,\) \(P,\) and \(T\) respectively. If the mass of its molecule is \(m,\) then its density is:
[\(k\)=Boltzmann's constant]
1. | \(mkT\) | 2. | \(\dfrac{P}{kT}\) |
3. | \(\dfrac{P}{kTV}\) | 4. | \(\dfrac{Pm}{kT}\) |
Two thermally insulated vessels \(1\) and \(2\) are filled with air at temperatures \(\mathrm{T_1},\) \(\mathrm{T_2},\) volume \(\mathrm{V_1},\) \(\mathrm{V_2}\) and pressure \(\mathrm{P_1},\) \(\mathrm{P_2}\) respectively. If the valve joining the two vessels is opened, the temperature inside the vessel at equilibrium will be:
1. | \(T_1+T_2\) | 2. | \(\dfrac{T_1+T_2}{2}\) |
3. | \(\dfrac{T_1T_2(P_1V_1+P_2V_2)}{P_1V_1T_2+P_2V_2T_1}\) | 4. | \(\dfrac{T_1T_2(P_1V_1+P_2V_2)}{P_1V_1T_1+P_2V_2T_2}\) |
At \(10^{\circ}\text{C}\) the value of the density of a fixed mass of an ideal gas divided by its pressure is \(x.\) At \(110^{\circ}\text{C}\) this ratio is:
1. | \(x\) | 2. | \(\dfrac{383}{283}x\) |
3. | \(\dfrac{10}{110}x\) | 4. | \(\dfrac{283}{383}x\) |
We have two vessels of equal volume, one filled with hydrogen and the other with equal mass of helium. The common temperature is \(27^{\circ}\text{C}.\) What is the relative number of molecules in the two vessels?
1. \(\frac{n_\mathrm{H}}{n_\mathrm{He}} = \frac{1}{1}\)
2. \(\frac{n_\mathrm{H}}{n_\mathrm{He}} = \frac{5}{1}\)
3. \(\frac{n_\mathrm{H}}{n_\mathrm{He}} = \frac{2}{1}\)
4. \(\frac{n_\mathrm{H}}{n_\mathrm{He}} = \frac{3}{1}\)
An experiment is carried out on a fixed amount of gas at different temperatures and at high pressure such that it deviates from the ideal gas behaviour. The variation of with P is shown in the diagram. The correct variation will correspond to: (Assuming that the gas in consideration is nitrogen)
1. | Curve A | 2. | Curve B |
3. | Curve C | 4. | Curve D |
Which one of the following graph is correct at constant pressure?
1. | 2. | ||
3. | 4. |