If at a pressure of \(10^6\) dyne/cm2, one gram of nitrogen occupies \(2\times10^4\) c.c. volume, then the average energy of a nitrogen molecule in erg is:

1. \(14\times10^{-13}\) 2. \(10\times10^{-12}\)
3. \(10^{6}\) 4. \(2\times10^{6}\)

Subtopic:  Kinetic Energy of an Ideal Gas |
 53%
From NCERT
To view explanation, please take trial in the course.
NEET 2025 - Target Batch
Hints
To view explanation, please take trial in the course.
NEET 2025 - Target Batch

Without change in temperature, a gas is forced in a smaller volume. Its pressure increases because its molecules:

1. strike the unit area of the container wall more often.
2. strike the unit area of the container wall at a higher speed.
3. strike the unit area of the container wall with greater force.
4. have more energy.

Subtopic:  Kinetic Energy of an Ideal Gas |
 54%
From NCERT
To view explanation, please take trial in the course.
NEET 2025 - Target Batch
Hints
To view explanation, please take trial in the course.
NEET 2025 - Target Batch

A gas at pressure P0 is contained in a vessel. If the masses of all the molecules are halved and their speeds doubled, the resulting pressure would be:

1. 4P0

2. 2P0

3. P0

4. P02

Subtopic:  Kinetic Energy of an Ideal Gas |
 68%
From NCERT
To view explanation, please take trial in the course.
NEET 2025 - Target Batch
Hints
To view explanation, please take trial in the course.
NEET 2025 - Target Batch

The mean free path for a gas, with molecular diameter \(d\) and number density \(n,\) can be expressed as:
1. \( \frac{1}{\sqrt{2} n \pi \mathrm{d}^2} \)
2. \( \frac{1}{\sqrt{2} n^2 \pi \mathrm{d}^2} \)
3. \(\frac{1}{\sqrt{2} n^2 \pi^2 d^2} \)
4. \( \frac{1}{\sqrt{2} n \pi \mathrm{d}}\)

Subtopic:  Mean Free Path |
 81%
From NCERT
NEET - 2020
To view explanation, please take trial in the course.
NEET 2025 - Target Batch
Hints
Links
To view explanation, please take trial in the course.
NEET 2025 - Target Batch

If the pressure of a gas is doubled, then the average kinetic energy per unit volume of the gas will be:

1. half of its initial value. 2. double its initial value.
3. one-fourth of its initial value. 4. four times its initial value.
Subtopic:  Kinetic Energy of an Ideal Gas |
 82%
From NCERT
To view explanation, please take trial in the course.
NEET 2025 - Target Batch
Hints
To view explanation, please take trial in the course.
NEET 2025 - Target Batch

The translational kinetic energy of moles of a diatomic gas at absolute temperature is given by:
1. 52nRT
2. 32nRT
3. 5nRT
4. 72nRT

Subtopic:  Kinetic Energy of an Ideal Gas |
 64%
From NCERT
To view explanation, please take trial in the course.
NEET 2025 - Target Batch
Hints
To view explanation, please take trial in the course.
NEET 2025 - Target Batch

Two isotherms are drawn at temperatures T1 and T2 as shown. The ratio of mean speed  at T1 and T2 is:
  

1. 1: 4 2. 1: 2
3. 2: 1 4. 4: 1
Subtopic:  Types of Velocities |
 61%
From NCERT
To view explanation, please take trial in the course.
NEET 2025 - Target Batch
Hints
To view explanation, please take trial in the course.
NEET 2025 - Target Batch

The translational kinetic energy of oxygen molecules at room temperature is 60 J. Their rotational kinetic energy will be?

1. 40 J

2. 60 J

3. 50 J

4. 20 J

Subtopic:  Law of Equipartition of Energy |
 68%
From NCERT
To view explanation, please take trial in the course.
NEET 2025 - Target Batch
Hints
To view explanation, please take trial in the course.
NEET 2025 - Target Batch

When the gas in an open container is heated, the mean free path:

1. Increases
2. Decreases
3. Remains the same
4. Any of the above depending on the molar mass

Subtopic:  Mean Free Path |
 58%
From NCERT
To view explanation, please take trial in the course.
NEET 2025 - Target Batch
Hints
To view explanation, please take trial in the course.
NEET 2025 - Target Batch

The change in the internal energy of an ideal gas does not depend on?

1. Number of moles
2.  Change in temperature
3. Specific heat at constant pressure \(C_p\) of the gas 
4. Specific heat at constant volume \(C_v\) of the gas

Subtopic:  Law of Equipartition of Energy |
 73%
From NCERT
To view explanation, please take trial in the course.
NEET 2025 - Target Batch
Hints
To view explanation, please take trial in the course.
NEET 2025 - Target Batch