The ratio of the specific heats $$\frac{{C}_{{P}}}{{C}_{{V}}}=\gamma$$  in terms of degrees of freedom($$n$$) is given by:

 1 $$\left(1+\frac{1}{n}\right )$$ 2 $$\left(1+\frac{n}{3}\right)$$ 3 $$\left(1+\frac{2}{n}\right)$$ 4 $$\left(1+\frac{n}{2}\right)$$​

Subtopic:  Specific Heat |
77%
From NCERT
NEET - 2015
To view explanation, please take trial in the course.
NEET 2025 - Target Batch
Hints
To view explanation, please take trial in the course.
NEET 2025 - Target Batch

The amount of heat energy required to raise the temperature of $$1$$ g of Helium at NTP, from $${T_1}$$ K to $${T_2}$$ K is:
1. $$\frac{3}{2}N_ak_B(T_2-T_1)$$
2. $$\frac{3}{4}N_ak_B(T_2-T_1)$$
3. $$\frac{3}{4}N_ak_B\frac{T_2}{T_1}$$
4. $$\frac{3}{8}N_ak_B(T_2-T_1)$$

Subtopic:  Specific Heat |
51%
From NCERT
AIPMT - 2013
To view explanation, please take trial in the course.
NEET 2025 - Target Batch
Hints
To view explanation, please take trial in the course.
NEET 2025 - Target Batch

If $$C_p$$ and $$C_v$$ denote the specific heats (per unit mass) of an ideal gas of molecular weight $$M$$ (where $$R$$ is the molar gas constant), the correct relation is:
1. $$C_p-C_v=R$$
2. $$C_p-C_v=\frac{R}{M}$$
3. $$C_p-C_v=MR$$
4. $$C_p-C_v=\frac{R}{M^2}$$

Subtopic:  Specific Heat |
64%
From NCERT
AIPMT - 2010
To view explanation, please take trial in the course.
NEET 2025 - Target Batch
Hints
To view explanation, please take trial in the course.
NEET 2025 - Target Batch