The mean free path \(l\) for a gas molecule depends upon the diameter, \(d\) of the molecule as:
1. | \(l\propto \dfrac{1}{d^2}\) | 2. | \(l\propto d\) |
3. | \(l\propto d^2 \) | 4. | \(l\propto \dfrac{1}{d}\) |
1. | mass density, the mass of the gas. |
2. | number density, molar mass. |
3. | mass density, molar mass. |
4. | number density, the mass of the gas. |
Match Column I and Column II and choose the correct match from the given choices.
Column I | Column II | ||
(A) | root mean square speed of gas molecules | (P) | \(\dfrac13nm\bar v^2\) |
(B) | the pressure exerted by an ideal gas | (Q) | \( \sqrt{\dfrac{3 R T}{M}} \) |
(C) | the average kinetic energy of a molecule | (R) | \( \dfrac{5}{2} R T \) |
(D) | the total internal energy of \(1\) mole of a diatomic gas | (S) | \(\dfrac32k_BT\) |
(A) | (B) | (C) | (D) | |
1. | (Q) | (P) | (S) | (R) |
2. | (R) | (Q) | (P) | (S) |
3. | (R) | (P) | (S) | (Q) |
4. | (Q) | (R) | (S) | (P) |
1. | \(\dfrac{3}{2}k_BT\) | 2. | \(\dfrac{5}{2}k_BT\) |
3. | \(\dfrac{7}{2}k_BT\) | 4. | \(\dfrac{1}{2}k_BT\) |
A cylinder contains hydrogen gas at a pressure of \(249~\text{kPa}\) and temperature \(27^\circ\text{C}.\) Its density is: (\(R=8.3~\text{J mol}^{-1} \text {K}^{-1}\))
1. \(0.2~\text{kg/m}^{3}\)
2. \(0.1~\text{kg/m}^{3}\)
3. \(0.02~\text{kg/m}^{3}\)
4. \(0.5~\text{kg/m}^{3}\)
The mean free path for a gas, with molecular diameter \(d\) and number density \(n,\) can be expressed as:
1. \( \frac{1}{\sqrt{2} n \pi \mathrm{d}^2} \)
2. \( \frac{1}{\sqrt{2} n^2 \pi \mathrm{d}^2} \)
3. \(\frac{1}{\sqrt{2} n^2 \pi^2 d^2} \)
4. \( \frac{1}{\sqrt{2} n \pi \mathrm{d}}\)
The temperature at which the rms speed of atoms in neon gas is equal to the rms speed of hydrogen molecules at \(15^{\circ} \mathrm{C}\) is: (Atomic mass of neon \(=20.2\) u, molecular mass of hydrogen \(=2\) u)
1. | \(2.9\times10^{3}\) K | 2. | \(2.9\) K |
3. | \(0.15\times10^{3}\) K | 4. | \(0.29\times10^{3}\) K |
1. | all vessels contain unequal number of respective molecules. |
2. | the root mean square speed of molecules is same in all the three cases. |
3. | the root mean square speed of helium is the largest. |
4. | the root mean square speed of sulfur hexafluoride is the largest. |
1. | \(223~\text{K}\) | 2. | \(669^\circ \text{C}\) |
3. | \(3295^\circ \text{C}\) | 4. | \(3097~\text{K}\) |