To find out the degree of freedom, the correct expression is:
1. \(f=\frac{2}{\gamma -1}\)
2. \(f=\frac{\gamma+1}{2}\)
3. \(f=\frac{2}{\gamma +1}\)
4. \(f=\frac{1}{\gamma +1}\)

Subtopic:  Law of Equipartition of Energy |
 84%
Level 1: 80%+
AIPMT - 2000
Hints

The equation of state for 5g of oxygen at a pressure P and temperature T, when occupying a volume V, will be: (where R is the gas constant)
1. PV = 5 RT
2. PV = (5/2) RT
3. PV = (5/16) RT
4. PV = (5/32) RT

Subtopic:  Ideal Gas Equation |
 84%
Level 1: 80%+
AIPMT - 2004
Hints

Uranium has two isotopes of masses \(235 \) and \(238\) units. If both are present in Uranium hexafluoride gas, which would have the larger average speed?
1. \(^{235} \mathrm{U} \mathrm{F}_{6}\)
2. \({}^{238} \mathrm{U} \mathrm{F}_{6}\)
3. Both will have the same average speed.
4. Data insufficient

Subtopic:  Types of Velocities |
 77%
Level 2: 60%+
Hints
Links

advertisementadvertisement

premium feature crown icon
Unlock IMPORTANT QUESTION
This question was bookmarked by 5 NEET 2025 toppers during their NEETprep journey. Get Target Batch to see this question.
✨ Perfect for quick revision & accuracy boost
Buy Target Batch
Access all premium questions instantly
A cylinder of fixed capacity \(44.8\) litres contains helium gas at standard temperature and pressure. What is the amount of heat needed to raise the temperature of the gas in the cylinder by \(15.0^\circ~\text{C}?\) (\(R=8.31\) J mol–1 K–1)
1. \(379\) J 2. \(357\) J
3. \(457\) J 4. \(374\) J
Subtopic:  Specific Heat |
 56%
Level 3: 35%-60%
Hints
Links

Match Column-I and Column-II and choose the correct match from the given choices.

Column-I Column-II
(A) Root mean square speed of gas molecules (P) \(\dfrac13nm\bar v^2\)
(B) The pressure exerted by an ideal gas (Q) \( \sqrt{\dfrac{3 R T}{M}} \)
(C) The average kinetic energy of a molecule (R) \( \dfrac{5}{2} R T \)
(D) The total internal energy of a mole of a diatomic gas (S) \(\dfrac32k_BT\)
 
(A) (B) (C) (D)
1. (Q) (P) (S) (R)
2. (R) (Q) (P) (S)
3. (R) (P) (S) (Q)
4. (Q) (R) (S) (P)
Subtopic:  Kinetic Energy of an Ideal Gas |
 80%
Level 1: 80%+
NEET - 2021
Hints
Links

An increase in the temperature of a gas-filled in a container would lead to:

1.  decrease in the intermolecular distance.
2.  increase in its mass.
3.  increase in its kinetic energy.
4.  decrease in its pressure.

Subtopic:  Kinetic Energy of an Ideal Gas |
 92%
Level 1: 80%+
Hints

advertisementadvertisement

If \(C_P\) and \(C_V\) denote the specific heats (per unit mass) of an ideal gas of molecular weight \(M\) (where \(R\) is the molar gas constant), the correct relation is:
1. \(C_P-C_V=R\)
2. \(C_P-C_V=\frac{R}{M}\)
3. \(C_P-C_V=MR\)
4. \(C_P-C_V=\frac{R}{M^2}\)

Subtopic:  Specific Heat |
 67%
Level 2: 60%+
AIPMT - 2010
Hints

The mean free path \(l\) for a gas molecule depends upon the diameter, \(d\) of the molecule as:

1. \(l\propto \dfrac{1}{d^2}\) 2. \(l\propto d\)
3. \(l\propto d^2 \) 4. \(l\propto \dfrac{1}{d}\)
Subtopic:  Mean Free Path |
 85%
Level 1: 80%+
NEET - 2020
Hints
Links

premium feature crown icon
Unlock IMPORTANT QUESTION
This question was bookmarked by 5 NEET 2025 toppers during their NEETprep journey. Get Target Batch to see this question.
✨ Perfect for quick revision & accuracy boost
Buy Target Batch
Access all premium questions instantly

Diatomic molecules like hydrogen have energies due to both translational as well as rotational motion. The equation in kinetic theory \(PV = \dfrac{2}{3}E,\) \(E\) is:

1. the total energy per unit volume.
2. only the translational part of energy because rotational energy is very small compared to translational energy.
3. only the translational part of the energy because during collisions with the wall, pressure relates to change in linear momentum.
4. the translational part of the energy because rotational energies of molecules can be of either sign and its average over all the molecules is zero.

Subtopic:  Kinetic Energy of an Ideal Gas |
Level 3: 35%-60%
Hints

advertisementadvertisement

premium feature crown icon
Unlock IMPORTANT QUESTION
This question was bookmarked by 5 NEET 2025 toppers during their NEETprep journey. Get Target Batch to see this question.
✨ Perfect for quick revision & accuracy boost
Buy Target Batch
Access all premium questions instantly

\(1\) mole of an ideal gas is contained in a cubical volume V, ABCDEFGH at \(300\) K (figure). One face of the cube (EFGH) is made up of a material which totally absorbs any gas molecule incident on it. At any given time:
                               

1. the pressure on EFGH would be zero. 
2. the pressure on all the faces will be equal.
3. the pressure on EFGH would be double the pressure on ABCD.
4. the pressure on EFGH would be half that on ABCD.
Subtopic:  Kinetic Energy of an Ideal Gas |
Level 3: 35%-60%
Hints