On a clear sunny day, an object at temperature T is placed on the top of a high mountain. An identical object at the same temperature is placed at the foot of the mountain. If both the objects are exposed to sun-rays for two hours in an identical manner, the object placed on the top of a mountain will register a temperature:

1. higher than the object at the foot.
2. lower than the object at the foot.
3. equal to the object at the foot.
4. none of the above.

Subtopic:  Radiation |
 52%
From NCERT
To view explanation, please take trial in the course.
NEET 2023 - Target Batch - Aryan Raj Singh
Hints
To view explanation, please take trial in the course.
NEET 2023 - Target Batch - Aryan Raj Singh

Taking into account the radiation that a human body emits which of the following statements is true?

1. The radiation is emitted only during the day.
2. The radiation is emitted during the summers and absorbed during the winters.
3. The radiation emitted lies in the ultraviolet region and hence is not visible.
4. The radiation emitted is in the infra-red region.
Subtopic:  Radiation |
 59%
From NCERT
To view explanation, please take trial in the course.
NEET 2023 - Target Batch - Aryan Raj Singh
Hints
To view explanation, please take trial in the course.
NEET 2023 - Target Batch - Aryan Raj Singh

According to Wein's law:
1. λmT= constant                 

2. λmT= constant

3. Tλm= constant                 

4. T+λm= constant

Subtopic:  Wien's Displacement Law |
 92%
From NCERT
To view explanation, please take trial in the course.
NEET 2023 - Target Batch - Aryan Raj Singh
Hints
Links
To view explanation, please take trial in the course.
NEET 2023 - Target Batch - Aryan Raj Singh

advertisementadvertisement

A black body at \(200\) K is found to emit maximum energy at a wavelength of \(14\) \(\mu \)m. When its temperature is raised to \(1000\) K, the wavelength at which maximum energy is emitted will be:

1. \(14\) \(\mu \)m 2. \(70\) \(\mu \)m
3. \(2.8\) \(\mu \)m 4. \(2.8\) nm
Subtopic:  Wien's Displacement Law |
 86%
From NCERT
To view explanation, please take trial in the course.
NEET 2023 - Target Batch - Aryan Raj Singh
Hints
Links
To view explanation, please take trial in the course.
NEET 2023 - Target Batch - Aryan Raj Singh

If the temperature of the sun becomes twice its present temperature, then:

1. Radiated energy would be predominantly in the infrared range.
2. Radiated energy would be primarily in the ultraviolet range.
3. Radiated energy would be predominantly in the X-ray region
4. Radiated energy would become twice as strong as it is now.


 

Subtopic:  Wien's Displacement Law |
From NCERT
To view explanation, please take trial in the course.
NEET 2023 - Target Batch - Aryan Raj Singh
Hints
Links
To view explanation, please take trial in the course.
NEET 2023 - Target Batch - Aryan Raj Singh

A black body has a maximum wavelength at a temperature of 2000 K. Its corresponding wavelength at temperatures of 3000 K will be: 

1. \({3 \over 2} \lambda_m\) 2. \({2 \over 3} \lambda_m\)
3. \({4 \over 9} \lambda_m\) 4. \({9 \over 4} \lambda_m\)
Subtopic:  Wien's Displacement Law |
 86%
From NCERT
To view explanation, please take trial in the course.
NEET 2023 - Target Batch - Aryan Raj Singh
Hints
Links
To view explanation, please take trial in the course.
NEET 2023 - Target Batch - Aryan Raj Singh

advertisementadvertisement

The temperature of an object is \(400^{\circ}\mathrm{C}\). The temperature of the surroundings may be assumed to be negligible. What temperature would cause the energy to radiate twice as quickly? (Given, \(2^{\frac{1}{4}} \approx 1.18\))
1. \(200^{\circ}\mathrm{C}\)
2. 200 K
3. \(800^{\circ}\mathrm{C}\)         
4. 800 K

Subtopic:  Stefan-Boltzmann Law |
 58%
From NCERT
To view explanation, please take trial in the course.
NEET 2023 - Target Batch - Aryan Raj Singh
Hints
Links
To view explanation, please take trial in the course.
NEET 2023 - Target Batch - Aryan Raj Singh

If the temperature of the body is increased from \(-73^{\circ}\mathrm{C}\) to \(327^{\circ}\mathrm{C}\), then the ratio of energy emitted per second in both cases is:
1. 1 : 3                         
2. 1 : 81
3. 1 : 27                       
4. 1 : 9

Subtopic:  Stefan-Boltzmann Law |
 84%
From NCERT
To view explanation, please take trial in the course.
NEET 2023 - Target Batch - Aryan Raj Singh
Hints
Links
To view explanation, please take trial in the course.
NEET 2023 - Target Batch - Aryan Raj Singh

If the sun’s surface radiates heat at 6.3×107 Wm-then the temperature of the sun, assuming it to be a black body, will be:
σ=5.7×10-8 Wm-2K-4
1. 5.8×103 K
2. 8.5×103 K
3. 3.5×108 K
4. 5.3×108 K

Subtopic:  Stefan-Boltzmann Law |
 59%
From NCERT
To view explanation, please take trial in the course.
NEET 2023 - Target Batch - Aryan Raj Singh
Hints
Links
To view explanation, please take trial in the course.
NEET 2023 - Target Batch - Aryan Raj Singh

advertisementadvertisement

Consider two hot bodies, B1 and B2 which have temperatures of \(100^{\circ}\mathrm{C}\) and \(80^{\circ}\mathrm{C}\) respectively at t=0. The temperature of the surroundings is \(40^{\circ}\mathrm{C}\). The ratio of the respective rates of cooling R1 and R2 of these two bodies at t = 0 will be:
1. R1:R2=3:2
2. R1:R2=5:4
3. R1:R2=2:3
4. R1:R2=4:5

Subtopic:  Newton's Law of Cooling |
 67%
From NCERT
To view explanation, please take trial in the course.
NEET 2023 - Target Batch - Aryan Raj Singh
Hints
Links
To view explanation, please take trial in the course.
NEET 2023 - Target Batch - Aryan Raj Singh