The gravitational potential energy of a particle of mass \(m\) increases by \(mgh,\) when it is raised through a height \(h\) in a uniform gravitational field "\(g\)". If a particle of mass \(m\) is raised through a height \(h\) in the earth's gravitational field (\(g\): the field on the earth's surface) and the increase in gravitational potential energy is \(U\), then:
 
1. \(U > mgh\)
2. \(U < mgh\)
3. \(U = mgh\)
4. any of the above may be true depending on the value of \(h,\) considered relative to the radius of the earth.
Subtopic:  Gravitational Potential Energy |
From NCERT
Please attempt this question first.
Hints
Please attempt this question first.

Two uniform solid spheres of equal radii \({R},\) but mass \({M}\) and \(4M\) have a centre to centre separation \(6R,\) as shown in the figure. The two spheres are held fixed. A projectile of mass \(m\) is projected from the surface of the sphere of mass \(M\) directly towards the centre of the second sphere. The expression for the minimum speed \(v\) of the projectile so that it reaches the surface of the second sphere is:


1. \(\left(\frac{3 {GM}}{5 {R}}\right)^{1 / 2}\)
2. \(\left(\frac{2 {GM}}{5 {R}}\right)^{1 / 2}\)
3. \(\left(\frac{3 {GM}}{2 {R}}\right)^{1 / 2}\)
4. \(\left(\frac{5 {GM}}{3 {R}}\right)^{1 / 2}\)

Subtopic:  Gravitational Potential Energy |
From NCERT
To view explanation, please take trial in the course.
NEET 2023 - Target Batch - Aryan Raj Singh
Hints
Links
To view explanation, please take trial in the course.
NEET 2023 - Target Batch - Aryan Raj Singh

A rocket is fired vertically with a speed of \(5\) km/s from the earth’s surface. How far from the earth does the rocket go before returning to the earth?
1. \(8\times10^6\) m
2. \(1.6\times10^6\) m
3. \(6.4\times10^6\) m
4. \(12\times10^6\) m

Subtopic:  Gravitational Potential Energy |
From NCERT
To view explanation, please take trial in the course.
NEET 2023 - Target Batch - Aryan Raj Singh
Hints
Links

advertisementadvertisement

A body of mass \(m\) is taken from the Earth’s surface to the height equal to twice the radius \((R)\) of the Earth. The change in potential energy of the body will be: 

1. \(\frac{2}{3}mgR\) 2. \(3mgR\)
3. \(\frac{1}{3}mgR\) 4. \(2mgR\)
Subtopic:  Gravitational Potential Energy |
 76%
From NCERT
AIPMT - 2013
To view explanation, please take trial in the course.
NEET 2023 - Target Batch - Aryan Raj Singh
Hints
Links
To view explanation, please take trial in the course.
NEET 2023 - Target Batch - Aryan Raj Singh

A satellite of mass \(m\) is orbiting the earth (of radius \(R\)) at a height \(h\) from its surface. What is the total energy of the satellite in terms of \(g_0?\)
(\(g_0\) is the value of acceleration due to gravity at the earth's surface)
1. \(\frac{mg_0R^2}{2(R+h)}\)
2. \(-\frac{mg_0R^2}{2(R+h)}\)
3. \(\frac{2mg_0R^2}{(R+h)}\)
4. \(-\frac{2mg_0R^2}{(R+h)}\)

Subtopic:  Gravitational Potential Energy |
 77%
From NCERT
NEET - 2016
To view explanation, please take trial in the course.
NEET 2023 - Target Batch - Aryan Raj Singh
Hints
Links
To view explanation, please take trial in the course.
NEET 2023 - Target Batch - Aryan Raj Singh