1. | \(\dfrac{v}{3}\) | 2. | \(\dfrac{2v}{3}\) |
3. | \(\dfrac{3v}{4}\) | 4. | \(\dfrac{9v}{4}\) |
1. | \(11.2\sqrt2~\text{km/s}\) | 2. | zero |
3. | \(11.2~\text{km/s}\) | 4. | \(11.2\sqrt3~\text{km/s}\) |
The escape velocity from the Earth's surface is \(v\). The escape velocity from the surface of another planet having a radius, four times that of Earth and the same mass density is:
1. | \(3v\) | 2. | \(4v\) |
3. | \(v\) | 4. | \(2v\) |
A particle of mass \(m\) is projected with a velocity, \(v=kv_{e} ~(k<1)\) from the surface of the earth. The maximum height, above the surface, reached by the particle is:
(Where \(v_e=\) escape velocity, \(R=\) the radius of the earth)
1. | \(\dfrac{R^{2}k}{1+k}\) | 2. | \(\dfrac{Rk^{2}}{1-k^{2}}\) |
3. | \(R\left ( \dfrac{k}{1-k} \right )^{2}\) | 4. | \(R\left ( \dfrac{k}{1+k} \right )^{2}\) |
A black hole is an object whose gravitational field is so strong that even light cannot escape from it. To what approximate radius would Earth (mass\(m=5.98\times 10^{24}~\text{kg})\) have to be compressed to be a black hole?
1. \(10^{-9}~\text{m}\)
2. \(10^{-6}~\text{m}\)
3. \(10^{-2}~\text{m}\)
4. \(100~\text{m}\)
A particle of mass \(\mathrm{m}\) is thrown upwards from the surface of the earth, with a velocity \(\mathrm{u}\). The mass and the radius of the earth are, respectively, \(\mathrm{M}\) and \(\mathrm{R}\). \(\mathrm{G}\) is the gravitational constant and \(\mathrm{g}\) is the acceleration due to gravity on the surface of the earth. The minimum value of \(\mathrm{u}\) so that the particle does not return back to earth is:
1. \(\sqrt{\frac{2 \mathrm{GM}}{\mathrm{R}^2}} \)
2. \(\sqrt{\frac{2 \mathrm{GM}}{\mathrm{R}}} \)
3.\(\sqrt{\frac{2 \mathrm{gM}}{\mathrm{R}^2}} \)
4. \(\sqrt{ \mathrm{2gR^2}}\)
The earth is assumed to be a sphere of radius \(R\). A platform is arranged at a height \(R\) from the surface of the earth. The escape velocity of a body from this platform is \(fv_e\), where \(v_e\) is its escape velocity from the surface of the earth. The value of \(f\) is:
1. \(\sqrt{2}\)
2. \(\frac{1}{\sqrt{2}}\)
3. \(\frac{1}{3}\)
4. \(\frac{1}{2}\)
1. | \(11.2~\text{km/s}\) | 2. | \(22.4~\text{km/s}\) |
3. | \(5.6~\text{km/s}\) | 4. | \(44.8~\text{km/s}\) |