Three identical spherical shells, each of mass \(m\) and radius \(r\) are placed as shown in the figure. Consider an axis \(XX'\), which is touching two shells and passing through the diameter of the third shell. The moment of inertia of the system consisting of these three spherical shells about the \(XX'\) axis is:
           

1. \(\frac{11}{5}mr^2\) 2. \(3mr^2\)
3. \(\frac{16}{5}mr^2\) 4. \(4mr^2\)

Subtopic:  Moment of Inertia |
 61%
From NCERT
NEET - 2015
To view explanation, please take trial in the course.
NEET 2025 - Target Batch
Hints
Links
To view explanation, please take trial in the course.
NEET 2025 - Target Batch

A force \(\vec{F}=\alpha \hat{i}+3 \hat{j}+6 \hat{k}\) is acting at a point  \(\vec{r}=2 \hat{i}-6 \hat{j}-12 \hat{k}\). The value of \(\alpha\) for which angular momentum about the origin is conserved is:
1. \(-1\)
2. \(2\)
3. zero
4. \(1\)

Subtopic:  Angular Momentum |
 68%
From NCERT
NEET - 2015
To view explanation, please take trial in the course.
NEET 2025 - Target Batch
Hints
Links
To view explanation, please take trial in the course.
NEET 2025 - Target Batch

An automobile moves on a road with a speed of \(54~\text{kmh}^{-1}.\)  The radius of its wheels is \(0.45\) m and the moment of inertia of the wheel about its axis of rotation is \(3~\text{kg-m}^2.\) If the vehicle is brought to rest in \(15\) s, the magnitude of average torque transmitted by its brakes to the wheel is:
1. \(6.66~\text{kg-m}^2\text{s}^{-2}\)
2. \(8.58~\text{kg-m}^2\text{s}^{-2}\)
3. \(10.86~\text{kg-m}^2\text{s}^{-2}\)
4. \(2.86~\text{kg-m}^2\text{s}^{-2}\)

Subtopic:  Torque |
 73%
From NCERT
NEET - 2015
To view explanation, please take trial in the course.
NEET 2025 - Target Batch
Hints
Links
To view explanation, please take trial in the course.
NEET 2025 - Target Batch

A solid cylinder of mass \(50\) kg and radius \(0.5\) m is free to rotate about the horizontal axis. A massless string is wound around the cylinder with one end attached to it and the other end hanging freely. The tension in the string required to produce an angular acceleration of \(2\) revolutions/s2 will be:
1. \(25\) N
2. \(50\) N
3. \(78.5\) N
4. \(157\) N

Subtopic:  Rotational Motion: Dynamics |
 51%
From NCERT
AIPMT - 2014
To view explanation, please take trial in the course.
NEET 2025 - Target Batch
Hints
Links
To view explanation, please take trial in the course.
NEET 2025 - Target Batch

A rod \(\mathrm{PQ}\) of mass \(M\) and length \(L\) is hinged at end \(\mathrm{P}\). The rod is kept horizontal by a massless string tied to point \(\mathrm{Q}\) as shown in the figure. When the string is cut, the initial angular acceleration of the rod is: 
            
1. \(\frac{g}{L}\)
2. \(\frac{2g}{L}\)
3. \(\frac{2g}{3L}\)
4. \(\frac{3g}{2L}\)

Subtopic:  Torque |
 80%
From NCERT
AIPMT - 2013
To view explanation, please take trial in the course.
NEET 2025 - Target Batch
Hints
Links
To view explanation, please take trial in the course.
NEET 2025 - Target Batch

When a mass is rotating in a plane about a fixed point, its angular momentum is directed along:

1. a line perpendicular to the plane of rotation
2. the line making an angle of \(45^{\circ}\) to the plane of rotation
3. the radius
4. the tangent to the orbit

Subtopic:  Angular Momentum |
 75%
From NCERT
AIPMT - 2012
To view explanation, please take trial in the course.
NEET 2025 - Target Batch
Hints
Links
To view explanation, please take trial in the course.
NEET 2025 - Target Batch

Two persons of masses \(55\) kg and \(65\) kg respectively, are at the opposite ends of a boat. The length of the boat is \(3.0\) m and weighs \(100\) kg. The \(55\) kg man walks up to the \(65\) kg man and sits with him. If the boat is in still water, the centre of mass of the system shifts by:
1. \(3.0\) m
2. \(2.3\) m
3. zero
4. \(0.75\) m

Subtopic:  Center of Mass |
 76%
From NCERT
AIPMT - 2012
To view explanation, please take trial in the course.
NEET 2025 - Target Batch
Hints
Links
To view explanation, please take trial in the course.
NEET 2025 - Target Batch

\(\mathrm{ABC}\) is an equilateral triangle with \(O\) as its centre. \(F_1\), \(F_2,\) and \(F_3\) represent three forces acting along the sides \(\mathrm{AB},\) \(\mathrm{BC}\) and \(\mathrm{AC}\) respectively. If the total torque about \(O\) is zero, then the magnitude of \(F_3\) is:
        
1. \(F_1+F_2\)
2. \(F_1-F_2\)
3. \(\frac{F_1+F_2}{2}\)
4. \(2F_1+F_2\)

Subtopic:  Torque |
 76%
From NCERT
AIPMT - 2012
To view explanation, please take trial in the course.
NEET 2025 - Target Batch
Hints
Links
To view explanation, please take trial in the course.
NEET 2025 - Target Batch

The instantaneous angular position of a point on a rotating wheel is given by the equation,
\(\theta(t)=2t^{3}-6t^{2}\)
The torque on the wheel becomes zero at:
1. \(t=0.5\) s 2. \(t=0.25\) s
3. \(t=2\) s 4. \(t=1\) s
Subtopic:  Rotational Motion: Kinematics |
 77%
From NCERT
AIPMT - 2011
To view explanation, please take trial in the course.
NEET 2025 - Target Batch
Hints
Links
To view explanation, please take trial in the course.
NEET 2025 - Target Batch

The moment of inertia of a thin uniform rod of mass \(M\) and length \(L\) about an axis passing through its mid-point and perpendicular to its length is \(I_0\). Its moment of inertia about an axis passing through one of its ends and perpendicular to its length is:
1. \(I_0+\frac{ML^2}{4}\)
2. \(I_0+2ML^2\)
3. \(I_0+ML^2\)
4. \(I_0+\frac{ML^2}{2}\)

Subtopic:  Moment of Inertia |
 80%
From NCERT
AIPMT - 2011
To view explanation, please take trial in the course.
NEET 2025 - Target Batch
Hints
Links
To view explanation, please take trial in the course.
NEET 2025 - Target Batch