A string is wrapped along the rim of a wheel of the moment of inertia \(0.10~\text{kg-m}^2\) and radius \(10~\text{cm}.\) If the string is now pulled by a force of \(10~\text N,\) then the wheel starts to rotate about its axis from rest. The angular velocity of the wheel after \(2~\text s\) will be:

1. \(40~\text{rad/s}\) 2. \(80~\text{rad/s}\)
3. \(10~\text{rad/s}\) 4. \(20~\text{rad/s}\)

Subtopic:  Rotational Motion: Dynamics |
 80%
Level 1: 80%+
NEET - 2022
Hints

Given below are two statements: 
Assertion (A): For a body under translatory as well as rotational equilibrium, net torque about any axis is zero.
Reason (R): Together \( \Sigma \vec{F}_{i}=0 \text { and } \Sigma\left(\vec{r}_{i} \times \vec{F}_{i}\right)=0 \) implies that \( \Sigma\left(\vec{r}_{i}-\overrightarrow{r_{0}}\right) \times \vec{F}=0 \).
  
1. Both (A) and (R) are True and (R) is the correct explanation of (A).
2. Both (A) and (R) are True but (R) is not the correct explanation of (A).
3. (A) is True but (R) is False.
4. Both (A) and (R) are False.
Subtopic:  Rotational Motion: Dynamics |
 75%
Level 2: 60%+
Hints

Given below are two statements: 
Assertion (A): The axis of rotation of a rigid body cannot lie outside the body.
Reason (R): It must pass through a material particle of the body.
  
1. Both (A) and (R) are True and (R) is the correct explanation of (A).
2. Both (A) and (R) are True but (R) is not the correct explanation of (A).
3. (A) is True but (R) is False.
4. Both (A) and (R) are False.

Subtopic:  Rotational Motion: Kinematics |
 73%
Level 2: 60%+
Hints

advertisementadvertisement

A ring of mass of \(10~\text{kg}\) and diameter of \(0.4~\text m\) is rotated about its axis. If it makes \(2100\) revolutions per minute, then its angular momentum will be:
1. \(44~\text{kg m}^{2} \text{s}^{-1}\)
2. \(88 ~\text{kg m}^{2} \text{s}^{-1}\)
3. \(4.4~\text{kg m}^{2} \text{s}^{-1}\)
4. \(0.4~\text{kg m}^{2} \text{s}^{-1}\)
Subtopic:  Angular Momentum |
 81%
Level 1: 80%+
Hints

What is the value of linear velocity, if the angular velocity vector is  \(\vec{\omega}=3 \hat{i}-4 \hat{j}+\hat{k}\) and the position vector is \(\vec {r}=5 \hat{i}-6 \hat{j}+6 \hat{k}?\) 
1. \(-18 \hat{i}-13 \hat{j}+2 \hat{k}\)
2. \(18 \hat{i}+13 \hat{j}-2 \hat{k}\)
3. \(6 \hat{i}+2 \hat{j}-3 \hat{k}\)
4. \(6 \hat{i}-2 \hat{j}+8 \hat{k}\)
Subtopic:  Rotational Motion: Kinematics |
 76%
Level 2: 60%+
Hints

The radius of gyration of a cylindrical rod of length  \(10 \sqrt 3\) m about an axis of rotation perpendicular to its length and passing through the center will be:
1. \(5\) m
2. \(3\) m
3. \(1\) m
4. \(4\) m
Subtopic:  Moment of Inertia |
 85%
Level 1: 80%+
JEE
Please attempt this question first.
Hints
Please attempt this question first.

advertisementadvertisement

The ratio of the radius of gyration of a circular disc to that of a circular ring, both having the same mass and radius, about their respective axes is:

1. \(\sqrt2:\sqrt3\) 2. \(\sqrt3:\sqrt2\)
3. \(1:\sqrt2\) 4. \(\sqrt2:1\)
Subtopic:  Moment of Inertia |
 80%
Level 1: 80%+
Please attempt this question first.
Hints
Please attempt this question first.

A ball is spinning on a horizontal surface, about the vertical axis passing through its centre. Its angular velocity decreases from \(2\pi~\text {rad/s}\) to \(\pi​​~\text {rad/s}\)  in \(10~\text {s}.\)  If the moment of inertia of the ball is \(0.5~\text{kg/m}^2,\) the torque acting on the ball is:
1. \(-\frac{\pi}{100} ~\text{N-m}\) 2. \(-\frac{\pi}{50} ~\text{N-m}\) 
3. \(-\frac{\pi}{20} ~\text{N-m}\) 4. \(-\frac{\pi}{10}~\text{N-m}\) 
Subtopic:  Torque |
 90%
Level 1: 80%+
Hints

An energy of \(484~\text J\) is spent in increasing the speed of a flywheel from \(60~\text{rpm}\) to \(360~\text{rpm}.\) The moment of inertia of the flywheel is:
1. \(0.7~\text{kg-m}^2\) 2. \(3.22~\text{kg-m}^2\)
3. \(30.8~\text{kg-m}^2\) 4. \(0.07~\text{kg-m}^2\)
Subtopic:  Moment of Inertia |
 59%
Level 3: 35%-60%
NEET - 2022
Hints

advertisementadvertisement

The moment of inertia of a uniform circular disc of radius \(R\) and mass \(M\) about an axis passing through the centre and perpendicular to its plane is:
1. \(\frac14MR^2\)
2. \(\frac12MR^2\)
3. \(MR^2\)
4. \(\frac32MR^2\)
Subtopic:  Moment of Inertia |
 84%
Level 1: 80%+
Please attempt this question first.
Hints
Please attempt this question first.