Force \(F\) on a particle moving in a straight line varies with distance \(d\) as shown in the figure. The work done on the particle during its displacement of \(12\) m is: 

              

1. \(21\) J
2. \(26\) J
3. \(13\) J
4. \(18\) J

Subtopic:  Work Done by Variable Force |
 73%
From NCERT
AIPMT - 2011
To view explanation, please take trial in the course.
NEET 2025 - Target Batch
Hints
Links
To view explanation, please take trial in the course.
NEET 2025 - Target Batch

A ball moving with velocity 2 ms-1 collides head-on with another stationary ball of double the mass. If the coefficient of restitution is 0.5, then their velocities (in ms-1) after the collision will be:

1. 0, 1

2. 1, 1

3. 1, 0.5

4. 0, 2

Subtopic:  Collisions |
 68%
From NCERT
AIPMT - 2010
To view explanation, please take trial in the course.
NEET 2025 - Target Batch
Hints
Links
To view explanation, please take trial in the course.
NEET 2025 - Target Batch

An engine pumps water through a hose pipe. Water passes through the pipe and leaves it with a velocity of 2 ms-1. The mass per unit length of water in the pipe is 100 kg m-1.What is the power of the engine?

1. 400 W

2. 200 W

3. 100 W

4. 800 W

Subtopic:  Power |
From NCERT
AIPMT - 2010
To view explanation, please take trial in the course.
NEET 2025 - Target Batch
Hints
Links
To view explanation, please take trial in the course.
NEET 2025 - Target Batch

advertisementadvertisement

A body of mass \(1\) kg is thrown upwards with a velocity \(20\) ms-1. It momentarily comes to rest after attaining a height of \(18\) m. How much energy is lost due to air friction?
(Take \(g=10\) ms-2)
1. \(20\) J
2. \(30\) J
3. \(40\) J
4. \(10\) J

Subtopic:  Work Energy Theorem |
 87%
From NCERT
AIPMT - 2009
To view explanation, please take trial in the course.
NEET 2025 - Target Batch
Hints
Links
To view explanation, please take trial in the course.
NEET 2025 - Target Batch

An engine pumps water continuously through a hose. Water leaves the hose with a velocity \(v\) and \(m\) is the mass per unit length of the water jet. What is the rate at which kinetic energy is imparted to water?
1. \(\frac{1}{2}mv^3\)
2. \(mv^3\)
3. \(\frac{1}{2}mv^2\)
4. \(\frac{1}{2}m^2v^2\)

Subtopic:  Power |
 78%
From NCERT
AIPMT - 2009
To view explanation, please take trial in the course.
NEET 2025 - Target Batch
Hints
Links
To view explanation, please take trial in the course.
NEET 2025 - Target Batch

A block of mass \(M\) is attached to the lower end of a vertical spring. The spring is hung from a ceiling and has a force constant value of \(k\). The mass is released from rest with the spring initially unstretched. The maximum extension produced in the length of the spring will be:
1. \(Mg/k\)
2. \(2Mg/k\)
3. \(4Mg/k\)
4. \(Mg/2k\)
Subtopic:  Elastic Potential Energy |
 70%
From NCERT
AIPMT - 2009
To view explanation, please take trial in the course.
NEET 2025 - Target Batch
Hints
Links
To view explanation, please take trial in the course.
NEET 2025 - Target Batch

advertisementadvertisement

Water falls from a height of \(60\) m at a rate of \(15\) kg/s to operate a turbine. The losses due to frictional forces are \(10\)% of energy. How much power is generated by the turbine? (\(g=10\) m/s2)
1. \(8.1\) kW
2. \(10.2\) kW
3. \(12.3\) kW
4. \(7.0\) kW
Subtopic:  Power |
 81%
From NCERT
AIPMT - 2008
To view explanation, please take trial in the course.
NEET 2025 - Target Batch
Hints
Links
To view explanation, please take trial in the course.
NEET 2025 - Target Batch

A shell of mass 200 g is ejected from a gun of mass 4 kg by an explosion that generates 1.05 kJ of energy. The initial velocity of the shell is:

1. 100 ms-1

2. 80 ms-1

3. 40 ms-1

4. 120 ms-1

Subtopic:  Collisions |
 57%
From NCERT
AIPMT - 2008
To view explanation, please take trial in the course.
NEET 2025 - Target Batch
Hints
Links
To view explanation, please take trial in the course.
NEET 2025 - Target Batch

A vertical spring with a force constant \(k\) is fixed on a table. A ball of mass \(m\) at a height \(h\) above the free upper end of the spring falls vertically on the spring so that the spring is compressed by a distance \(d\). The net work done in the process is:
1. \(mg(h+d)+\frac{1}{2}kd^2\)
2. \(mg(h+d)-\frac{1}{2}kd^2\)
3. \(mg(h-d)-\frac{1}{2}kd^2\)
4. \(mg(h-d)+\frac{1}{2}kd^2\)

Subtopic:  Elastic Potential Energy |
 65%
From NCERT
AIPMT - 2007
To view explanation, please take trial in the course.
NEET 2025 - Target Batch
Hints
Links
To view explanation, please take trial in the course.
NEET 2025 - Target Batch

advertisementadvertisement

The potential energy of a long spring when stretched by \(2\) cm is \(U\). If the spring is stretched by \(8\) cm, the potential energy stored in it is:
1. \(4U\)
2. \(8U\)
3. \(16U\)
4. \(U/4\)

Subtopic:  Elastic Potential Energy |
 78%
From NCERT
AIPMT - 2006
To view explanation, please take trial in the course.
NEET 2025 - Target Batch
Hints
Links
To view explanation, please take trial in the course.
NEET 2025 - Target Batch