Consider a drop of rainwater having a mass of \(1~\text{gm}\) falling from a height of \(1~\text{km}.\) It hits the ground with a speed of \(50~\text{m/s}.\) Take \(g\)  as constant with a value \(10~\text{m/s}^2.\) The work done by the
(i) gravitational force and the (ii) resistive force of air is:

1. \((\text{i})~1.25~\text{J};\) \((\text{ii})~-8.25~\text{J}\)
2. \((\text{i})~100~\text{J};\) \((\text{ii})~8.75~\text{J}\)
3. \((\text{i})~10~\text{J};\) \((\text{ii})~-8.75~\text{J}\)
4. \((\text{i})~-10~\text{J};\) \((\text{ii})~-8.75~\text{J}\)

Subtopic:  Work Energy Theorem |
 71%
From NCERT
NEET - 2017
To view explanation, please take trial in the course.
NEET 2025 - Target Batch
Hints
Links
To view explanation, please take trial in the course.
NEET 2025 - Target Batch

What is the minimum velocity with which a body of mass m must enter a vertical loop of radius R so that it can complete the loop?

1. 2gR

2. 3gR

3. 5gR

4. gR
 

Subtopic:  Work Energy Theorem |
 78%
From NCERT
NEET - 2016
To view explanation, please take trial in the course.
NEET 2025 - Target Batch
Hints
Links
To view explanation, please take trial in the course.
NEET 2025 - Target Batch