The figure gives the \((x\text-t)\) plot of a particle in a one-dimensional motion. Three different equal intervals of time are shown. The signs of average velocity for each of the intervals \(1,\) \(2\) and \(3,\) respectively are:
1. | \(-,-,+\) | 2. | \(+,-,+\) |
3. | \(-,+,+\) | 4. | \(+,+,-\) |
If a body travels some distance in a given time interval, then for that time interval, its:
1. | Average speed ≥ |Average velocity| |
2. | |Average velocity| ≥ Average speed |
3. | Average speed < |Average velocity| |
4. | |Average velocity| must be equal to average speed. |
A car moves from \(X\) to \(Y\) with a uniform speed \(v_u\) and returns to \(X\) with a uniform speed \(v_d.\) The average speed for this round trip is:
1. | \(\dfrac{2 v_{d} v_{u}}{v_{d} + v_{u}}\) | 2. | \(\sqrt{v_{u} v_{d}}\) |
3. | \(\dfrac{v_{d} v_{u}}{v_{d} + v_{u}}\) | 4. | \(\dfrac{v_{u} + v_{d}}{2}\) |