A point moves in a straight line under the retardation \(av^2\). If the initial velocity is \(u,\) the distance covered in \(t\) seconds is:
1. \((aut)\)
2. \(\frac{1}{a}\mathrm{ln}(aut)\)
3. \(\frac{1}{a}\mathrm{ln}(1+aut)\)
4. \(a~\mathrm{ln}(aut)\)

Subtopic:  Non Uniform Acceleration |
 56%
From NCERT
To view explanation, please take trial in the course.
NEET 2026 - Target Batch - Vital
Hints
Links
To view explanation, please take trial in the course.
NEET 2026 - Target Batch - Vital

The relation between time and distance is given by \(t=\alpha x^2+\beta x,\) where \(\alpha\) and \(\beta\) are constants. The retardation, as calculated based on this equation, will be (assume \(v\) to be velocity):
1. \(2\alpha v^3\)
2. \(2\beta v^3\)
3. \(2\alpha\beta v^3\)
4. \(2\beta^2 v^3\)

Subtopic:  Instantaneous Speed & Instantaneous Velocity |
 54%
From NCERT
To view explanation, please take trial in the course.
NEET 2026 - Target Batch - Vital
Hints
To view explanation, please take trial in the course.
NEET 2026 - Target Batch - Vital

The displacement of a particle is given by \(y = a + bt + ct^{2} - dt^{4}\). The initial velocity and acceleration are, respectively:

1. \(b, -4d\) 2. \(-b,2c\)
3. \(b, ~2c\) 4. \(2c, -2d\)
Subtopic:  Non Uniform Acceleration |
 82%
From NCERT
PMT - 1999
To view explanation, please take trial in the course.
NEET 2026 - Target Batch - Vital
Hints
Links
To view explanation, please take trial in the course.
NEET 2026 - Target Batch - Vital

advertisementadvertisement

The acceleration \(a\) in m/s2 of a particle is given by a=3t2+2t+2 where t is the time. If the particle starts out with a velocity, \(u=2\) m/s at t = 0, then the velocity at the end of \(2\) seconds will be:
1. \(12\) m/s
2. \(18\) m/s
3. \(27\) m/s
4. \(36\) m/s

Subtopic:  Acceleration |
 74%
From NCERT
To view explanation, please take trial in the course.
NEET 2026 - Target Batch - Vital
Hints
Links
To view explanation, please take trial in the course.
NEET 2026 - Target Batch - Vital

A particle moves along a straight line such that its displacement at any time \(t\) is given by \(S = t^{3} - 6 t^{2} + 3 t + 4\) metres. The velocity when the acceleration is zero is:

1. \(4\) ms-1 2. \(-12\) ms−1
3. \(42\) ms−1 4. \(-9\) ms−1
Subtopic:  Acceleration |
 82%
From NCERT
PMT - 1994
To view explanation, please take trial in the course.
NEET 2026 - Target Batch - Vital
Hints
Links
To view explanation, please take trial in the course.
NEET 2026 - Target Batch - Vital

The position \(x\) of a particle varies with time \(t\) as \(x=at^2-bt^3\). The acceleration of the particle will be zero at time \(t\) equal to:

1. \(\dfrac{a}{b}\) 2. \(\dfrac{2a}{3b}\)
3. \(\dfrac{a}{3b}\) 4. zero
Subtopic:  Acceleration |
 85%
From NCERT
PMT - 1997
To view explanation, please take trial in the course.
NEET 2026 - Target Batch - Vital
Hints
Links
To view explanation, please take trial in the course.
NEET 2026 - Target Batch - Vital

advertisementadvertisement

A student is standing at a distance of \(50\) metres from the bus. As soon as the bus begins its motion with an acceleration of \(1\) ms–2, the student starts running towards the bus with a uniform velocity \(u\). Assuming the motion to be along a straight road, the minimum value of \(u\), so that the student is able to catch the bus is:
1. \(5\) ms–1
2. \(8\) ms–1
3. \(10\) ms–1
4. \(12\) ms–1

Subtopic:  Uniformly Accelerated Motion |
 74%
From NCERT
To view explanation, please take trial in the course.
NEET 2026 - Target Batch - Vital
Hints
Links
To view explanation, please take trial in the course.
NEET 2026 - Target Batch - Vital

If the velocity of a particle is given by \(v = (180-16x)^{1/2}~\text{m/s}\), then its acceleration will be: 

1. zero 2. \(8\) m/s2
3. \(-8\) m/s2 4. \(4\) m/s
Subtopic:  Acceleration |
 68%
From NCERT
To view explanation, please take trial in the course.
NEET 2026 - Target Batch - Vital
Hints
Links
To view explanation, please take trial in the course.
NEET 2026 - Target Batch - Vital

A body is thrown vertically upwards. If the air resistance is to be taken into account, then the time during which the body rises is: 

1. Equal to the time of fall.
2. Less than the time of fall.
3. Greater than the time of fall.
4. Twice the time of fall.
Subtopic:  Non Uniform Acceleration |
 56%
From NCERT
PMT - 2001
To view explanation, please take trial in the course.
NEET 2026 - Target Batch - Vital
Hints
Links
To view explanation, please take trial in the course.
NEET 2026 - Target Batch - Vital

advertisementadvertisement

A body starts to fall freely under gravity. The distances covered by it in the first, second and third second will be in the ratio: 

1. \(1:3:5\) 2. \(1:2:3\)
3. \(1:4:9\) 4. \(1:5:6\)
Subtopic:  Uniformly Accelerated Motion |
 87%
From NCERT
To view explanation, please take trial in the course.
NEET 2026 - Target Batch - Vital
Hints
Links
To view explanation, please take trial in the course.
NEET 2026 - Target Batch - Vital