The displacement of a particle is given by \(y = a + bt + ct^{2} - dt^{4}\). The initial velocity and acceleration are, respectively:
1. | \(b, -4d\) | 2. | \(-b,2c\) |
3. | \(b, ~2c\) | 4. | \(2c, -2d\) |
1. | \(- 2 nβ^{2} x^{- 2 n - 1}\) | 2. | \(- 2 nβ^{2} x^{- 4 n - 1}\) |
3. | \(- 2 \beta^{2} x^{- 2 n + 1}\) | 4. | \(- 2 nβ^{2} x^{- 4 n + 1}\) |
1. | \(-\frac{1}{2}\left(a\omega^2\sin\omega t\right)t^2\) | 2. | \(a\omega \sin \omega t\) |
3. | \(a\omega \cos \omega t\) | 4. | \(a\sin \omega t\) |
A particle is moving along the \(x\)-axis such that its velocity varies with time as per the equation \(v = 20\left(1-\frac{t}{2}\right) \). At \(t=0 \) particle is at the origin. From the following, select the correct position \((x)\) - time \((t)\) plot for the particle:
1. | ![]() |
2. | ![]() |
3. | ![]() |
4. | ![]() |