The displacement \((x)\) of a point moving in a straight line is given by; \(x=8t^2-4t.\) Then the velocity of the particle is zero at:
1. | \(0.4~\text s\) | 2. | \(0.25~\text s\) |
3. | \(0.5~\text s\) | 4. | \(0.3~\text s\) |
If the velocity of a particle is \(v=At+Bt^{2},\) where \(A\) and \(B\) are constants, then the distance travelled by it between \(1~\text{s}\) and \(2~\text{s}\) is:
1. | \(3A+7B\) | 2. | \(\frac{3}{2}A+\frac{7}{3}B\) |
3. | \(\frac{A}{2}+\frac{B}{3}\) | 4. | \(\frac{3A}{2}+4B\) |
The position of an object moving along the \(x\text-\)axis is given by, \(x=a+bt^2\), where \(a=8.5 ~\text m,\) \(b=2.5~\text{m/s}^2,\) and \(t\) is measured in seconds. Its velocity at \(t=2.0~\text s\) will be:
1. \(13~\text{m/s}\)
2. \(17~\text{m/s}\)
3. \(10~\text{m/s}\)
4. \(0~\text{m/s}\)
For a particle, displacement time relation is given by; . Its displacement, when its velocity is zero will be:
1. \(2\) m
2. \(4\) m
3. \(0\) m
4. none of the above
The position \(x\) of a particle moving along the \(x\)-axis varies with time \(t\) as \(x=20t-5t^2,\) where \(x\) is in meters and \(t\) is in seconds. The particle reverses its direction of motion at:
1. \(x=40~\text{m}\)
2. \(x=10~\text{m}\)
3. \(x=20~\text{m}\)
4. \(x=30~\text{m}\)
The relation \(3t = \sqrt{3x} + 6\) describes the displacement of a particle in one direction where \(x\) is in metres and \(t\) in seconds. The displacement, when velocity is zero, is:
1. | \(24\) metres | 2. | \(12\) metres |
3. | \(5\) metres | 4. | zero |
1. | zero velocity. | 2. | zero acceleration. |
3. | non-zero velocity. | 4. | non-zero acceleration. |
Which of the following four statements is false?
1. | A body can have zero velocity and still be accelerated. |
2. | A body can have a constant velocity and still have a varying speed. |
3. | A body can have a constant speed and still have a varying velocity. |
4. | The direction of the velocity of a body can change when its acceleration is constant. |
A particle moves along a straight line and its position as a function of time is given by \(x= t^3-3t^2+3t+3\)
1. | \(t=1~\text{s}\) and reverses its direction of motion. | stops at
2. | \(t= 1~\text{s}\) and continues further without a change of direction. | stops at
3. | \(t=2~\text{s}\) and reverses its direction of motion. | stops at
4. | \(t=2~\text{s}\) and continues further without a change of direction. | stops at
The relation between time and distance is given by \(t=\alpha x^2+\beta x,\) where \(\alpha\) and \(\beta\) are constants. The retardation, as calculated based on this equation, will be (assume \(v\) to be velocity):
1. \(2\alpha v^3\)
2. \(2\beta v^3\)
3. \(2\alpha\beta v^3\)
4. \(2\beta^2 v^3\)