Three vectors A, B, and C add up to zero. Then:

 1 vector (A×B)×C is not zero unless vectors B and C are parallel. 2 vector (A×B).C is not zero unless vectors B and C are parallel. 3 if vectors A, B and C define a plane, (A×B)×C is in that plane. 4 (A×B).C = |A||B||C|  → C2 = A2 + B2

The incorrect statement/s is/are:

1. (b, d)
2. (a, c)
3. (b, c, d)
4. (a, b)

Subtopic:  Vector Product |
From NCERT
To view explanation, please take trial in the course.
NEET 2023 - Target Batch - Aryan Raj Singh
Hints
If $$\left| \vec{A}\right|$$ = $$2$$ and $$\left| \vec{B}\right|$$ = $$4,$$ then match the relations in column-I with the angle $$\theta$$ between $$\vec{A}$$ and $$\vec{B}$$ in column-II.
 Column-I Column-II (A) $$\left| \vec{A}\times \vec{B}\right|$$ $$=0$$ (p)  $$\theta=30^\circ$$ (B)$$\left| \vec{A}\times \vec{B}\right|$$$$=8$$ (q) $$\theta=45^\circ$$ (C) $$\left| \vec{A}\times \vec{B}\right|$$ $$=4$$ (r)  $$\theta=90^\circ$$ (D) $$\left| \vec{A}\times \vec{B}\right|$$ $$=4\sqrt2$$ (s)  $$\theta=0^\circ$$