It is found that $$|\vec{A}+\vec{B}|=|\vec{A}|$$. This necessarily implies:

 1 $$\vec{B}=0$$ 2 $$\vec{A},$$ $$\vec{B}$$ are antiparallel 3 $$\vec{A}$$ and $$\vec{B}$$ are perpendicular 4 $$\vec{A}.\vec{B}\leq0$$

Subtopic:  Resultant of Vectors |
From NCERT
To view explanation, please take trial in the course.
NEET 2023 - Target Batch - Aryan Raj Singh
Hints
To view explanation, please take trial in the course.
NEET 2023 - Target Batch - Aryan Raj Singh

Given below in Column-I are the relations between vectors $$a,$$ $$b,$$ and $$c$$ and in Column-II are the orientations of $$a,$$ $$b,$$ and $$c$$ in the XY-plane. Match the relation in Column-I to the correct orientations in Column-II.

 Column-I Column-II a $$a + b = c$$ (i) b $$a- c = b$$ (ii) c $$b - a = c$$ (iii) d $$a + b + c = 0$$ (iv)

 1 a(ii), b (iv), c(iii), d(i) 2 a(i), b (iii), c(iv), d(ii) 3 a(iv), b (iii), c(i), d(ii) 4 a(iii), b (iv), c(i), d(ii)

Subtopic:  Resultant of Vectors |
70%
From NCERT
To view explanation, please take trial in the course.
NEET 2023 - Target Batch - Aryan Raj Singh
Hints
To view explanation, please take trial in the course.
NEET 2023 - Target Batch - Aryan Raj Singh

For two vectors $$\vec A$$ and $$\vec B$$, |$$\vec A$$+$$\vec B$$|=|$$\vec A$$ - $$\vec B$$| is always true when:

 (a) |$$\vec A$$| = |$$\vec B$$|  ≠ $$0$$ (b) $$\vec A\perp\vec B$$ (c) |$$\vec A$$| = |$$\vec B$$|  ≠ $$0$$ and $$\vec A$$ and $$\vec B$$ are parallel or antiparallel. (d) when either |$$\vec A$$| or |$$\vec B$$| is zero.

Choose the correct option:
1. (a), (d)
2. (b), (c)
3. (b), (d)
4. (a), (b)
Subtopic:  Resultant of Vectors |
55%
From NCERT
To view explanation, please take trial in the course.
NEET 2023 - Target Batch - Aryan Raj Singh
Hints
To view explanation, please take trial in the course.
NEET 2023 - Target Batch - Aryan Raj Singh