1. | \(a=-\dfrac{1}{2},~ \alpha=-\dfrac{1}{2}, ~\beta=-1, ~\gamma=\dfrac{1}{2},~ \delta=\dfrac{7}{2}\) |
2. | \(a=\dfrac{1}{2},~\alpha=\dfrac{1}{2},~ \beta=-\dfrac{1}{2}, ~\gamma=\dfrac{1}{2},~ \delta=\dfrac{7}{2}\) |
3. | \(a=\dfrac{1}{2}, ~\alpha=\dfrac{1}{2}, ~\beta=-1, ~\gamma=+1, ~\delta=\dfrac{3}{2}\) |
4. | \(a=-\dfrac{1}{2}, ~\alpha=-\dfrac{1}{2}, ~\beta=-1, ~\gamma=-\dfrac{1}{2}, ~\delta=\dfrac{5}{2}\) |
1. | \(\alpha t / \beta \) | 2. | \(\alpha \beta t \) |
3. | \(\alpha \beta / t \) | 4. | \(\beta t / \alpha\) |
1. | \([{M}^{3/2}{L}^{1/2}{T}^{-3}]\) | 2. | \([M^{1/2}LT^{-3}]\) |
3. | \([{M}^2{L}^{1/2}{T}^{-4}]\) | 4. | \([ML^{2}T^{-4}]\) |
1. | angular momentum |
2. | coefficient of thermal conductivity |
3. | torque |
4. | gravitational constant |
1. | both units and dimensions |
2. | units but no dimensions |
3. | dimensions but no units |
4. | no units and no dimensions |
If force \([F]\), acceleration \([A]\) and time \([T]\) are chosen as the fundamental physical quantities, then find the dimensions of energy:
1. \(\left[FAT^{-1}\right]\)
2. \(\left[FA^{-1}T\right]\)
3. \(\left[FAT\right]\)
4. \(\left[FAT^{2}\right]\)