The activation energy of a reaction can be determined from the slope of which of the following graphs?
1. ln K vs T
2. ln KTvs T
3. ln K vs IT
4. ln TK vs IT

Subtopic:  Arrhenius Equation |
 90%
From NCERT
NEET - 2015
To view explanation, please take trial in the course.
NEET 2023 - Target Batch - Aryan Raj Singh
Hints
To view explanation, please take trial in the course.
NEET 2023 - Target Batch - Aryan Raj Singh

What is the activation energy for a reaction if its rate doubles when the temperature is raised from 20oC to 35oC?
(R = 8.314 J mol–1 K–1)
1. 269 kJ mol–1
2. 34.7 kJ mol–1
3. 15.1 kJ mol–1
4. 342 kJ mol–1
Subtopic:  Arrhenius Equation |
 66%
From NCERT
AIPMT - 2013
To view explanation, please take trial in the course.
NEET 2023 - Target Batch - Aryan Raj Singh
Hints
To view explanation, please take trial in the course.
NEET 2023 - Target Batch - Aryan Raj Singh

A reaction having equal energies of activation for forward and reverse reaction has:

1. ΔG = 0

2. ΔH = 0

3. ΔH = ΔG = ΔS = 0

4. ΔS = 0

Subtopic:  Arrhenius Equation |
 72%
From NCERT
AIPMT - 2013
To view explanation, please take trial in the course.
NEET 2023 - Target Batch - Aryan Raj Singh
Hints
To view explanation, please take trial in the course.
NEET 2023 - Target Batch - Aryan Raj Singh

advertisementadvertisement

Activation energy Ea and rate constant (k1 and k2) of a chemical reaction at two different temperatures (T1 and T2) are related by:

1.  \(\ln \frac{k_2}{k_1}=-\frac{E_a}{R}\left(\frac{1}{T_2}-\frac{1}{T_1}\right)\)
2.  \(\ln \frac{k_2}{k_1}=-\frac{E_a}{R}\left(\frac{1}{T_2}+\frac{1}{T_1}\right)\)
3. \(\ln \frac{k_2}{k_1}=\frac{E_a}{R}\left(\frac{1}{T_2}-\frac{1}{T_1}\right)\)
4.  \(\ln \frac{k_2}{k_1}=-\frac{E_a}{R}\left(\frac{1}{T_1}-\frac{1}{T_2}\right)\)
Subtopic:  Arrhenius Equation |
 55%
From NCERT
AIPMT - 2012
To view explanation, please take trial in the course.
NEET 2023 - Target Batch - Aryan Raj Singh
Hints
To view explanation, please take trial in the course.
NEET 2023 - Target Batch - Aryan Raj Singh

For an endothermic reaction, the energy of activation is Ea, and the enthalpy of reaction is ΔH (both of these in kJ/mol). The minimum value of Ea will be:

1. Less than H

2. Equal to H

3. More than H

4. Equal to zero

Subtopic:  Arrhenius Equation |
 62%
From NCERT
AIPMT - 2010
To view explanation, please take trial in the course.
NEET 2023 - Target Batch - Aryan Raj Singh
Hints
To view explanation, please take trial in the course.
NEET 2023 - Target Batch - Aryan Raj Singh

The rate constants k1 and k2 for two different reactions are 1016. e-2000/T and 1015. e-1000/T, respectively. The temperature at which k1= k2 is:

1. 1000 K

2. 20002.303 K

3. 2000 K

4. 10002.303 K

Subtopic:  Arrhenius Equation |
 61%
From NCERT
AIPMT - 2008
To view explanation, please take trial in the course.
NEET 2023 - Target Batch - Aryan Raj Singh
Hints
To view explanation, please take trial in the course.
NEET 2023 - Target Batch - Aryan Raj Singh

advertisementadvertisement