1. | 120.9 kJ | 2. | 241.82 kJ |
3. | 18 kJ | 4. | 100 kJ |
At standard conditions, if the change in the enthalpy for the following reaction is –109 kJ mol–1
H2(g)+Br2(g)2HBr(g) and the bond energy of H2 and Br2 is 435 kJ mol–1 and 192 kJ mol–1 respectively, what is the bond energy (in kJ mol–1) of HBr?
1. | 368 | 2. | 736 |
3. | 518 | 4. | 259 |
The bond dissociation energies of and XY are in the ratio of 1 : 0.5 : 1. ∆H for the formation of XY is –200 kJ mol–1. The bond dissociation energy of X2 will be
1. 200 kJ mol–1
2. 100 kJ mol–1
3. 800 kJ mol–1
4. 400 kJ mol–1
The heat of combustion of carbon to CO2 is –393.5 KJ/mol. The heat released upon the formation of 35.2 g of CO2 from carbon and oxygen gas is:
1. –315 KJ
2. +315 KJ
3. –630 KJ
4. +630 KJ
The enthalpy of fusion of water is 1.435 kcal/mol. The molar entropy change for the melting of ice at 0 oC is:
1. 10.52 cal/(mol K)
2. 21.04 cal/(mol K)
3. 5.260 cal/(mol K)
4. 0.526 cal/(mol K)
From the following bond energies:
H—H bond energy: 431.37 kJ mol-1
C=C bond energy: 606.10 kJ mol-1
C—C bond energy: 336.49 kJ mol-1
C—H bond energy: 410.50 kJ mol-1
Enthalpy for the reaction,
will be:
1. | 1523.6 kJ mol-1 | 2. | -243.6 kJ mol-1 |
3. | -120.0 kJ mol-1 | 4. | 553.0 kJ mol-1 |
1. 93 kJ mol-1
2. - 245 kJ mol-1
3. -93 kJ mol-1
4. 245 kJ mol-1
Consider the following reactions:
(i) | H+(aq) + OH-(aq) → H2O(l) ΔH = -x1 kJmol-1 |
(ii) | H2(g) + 1/2O2(g) → H2O(l) ΔH = -x2 kJmol-1 |
(iii) | CO2(g) + H2(g) → CO (g) + H2O(l) ΔH = -x3 kJmol-1 |
(iv) | C2H2(g) + 5/2O2(g) → 2CO2 + H2O(l) ΔH = -x4 kJmol-1 |
Enthalpy of formation of H2O(l) is :
1.
2.
3.
4.
The bond energy of H—H and Cl-Cl is 430 kJ
mol-1 and 240 kJ mol-1 respectively and ΔHf for HCl is -90 kJ mol-1. The bond enthalpy of HCl is:
1. 290
2. 380
3. 425
4. 245
The enthalpy of combustion of H2, cyclohexene (C6H10) and cyclohexane (C6H12) are -241, -3800 and -3920 kJ per mol respectively. Heat of hydrogenation of cyclohexene is:
1. -121 kJ per mol
2. +121 kJ per mol
3. +242 kJ per mol
4. -242 kJ per mol