For a photoelectric cell, the graph showing the variation of stopping potential \((V_{0})\) with the frequency \((f)\) of incident light is best represented by:
 
1. 2.
3. 4.
Subtopic:  Einstein's Photoelectric Equation |
 73%
From NCERT
To view explanation, please take trial in the course.
NEET 2023 - Target Batch - Aryan Raj Singh
Hints
To view explanation, please take trial in the course.
NEET 2023 - Target Batch - Aryan Raj Singh

According to Einstein's photoelectric equation, the graph between the kinetic energy of photoelectrons ejected and the frequency of incident radiation is:

1.   2.
3. 4.
Subtopic:  Einstein's Photoelectric Equation |
 77%
From NCERT
AIPMT - 2004
To view explanation, please take trial in the course.
NEET 2023 - Target Batch - Aryan Raj Singh
Hints
To view explanation, please take trial in the course.
NEET 2023 - Target Batch - Aryan Raj Singh

The correct graph between the maximum energy of a photoelectron \(\left(K_{max}\right)\) and the inverse of the wavelength \(\left(\frac{1}{\lambda}\right)\) of the incident radiation is given by the curve:

          

1. \(A\) 2. \(B\)
3. \(C\) 4. None of these
Subtopic:  Einstein's Photoelectric Equation |
 80%
From NCERT
To view explanation, please take trial in the course.
NEET 2023 - Target Batch - Aryan Raj Singh
Hints
Links
To view explanation, please take trial in the course.
NEET 2023 - Target Batch - Aryan Raj Singh

advertisementadvertisement

Given below are two statements: one is labelled as Assertion (A) and the other is labelled as Reason (R):
 
Assertion (A): The kinetic energy of the emitted photoelectrons for a given metal changes only with a change in the frequency of the incident radiations.
Reason (R): The kinetic energy of photo-electrons emitted by a photo-sensitive surface depends upon the intensity of the incident radiation.

In the light of the above statements choose the correct answer from the options given below:
 
1. Both (A) and (R) are true and (R) is the correct explanation of (A).
2. Both (A) and (R) are true but (R) is not the correct explanation of (A).
3. (A) is true but (R) is false.
4. Both (A) and (R) are false.
Subtopic:  Einstein's Photoelectric Equation |
 77%
From NCERT
To view explanation, please take trial in the course.
NEET 2023 - Target Batch - Aryan Raj Singh
Hints
To view explanation, please take trial in the course.
NEET 2023 - Target Batch - Aryan Raj Singh