When the light of frequency \(2\nu_0\) (where \(\nu_0\) is threshold frequency), is incident on a metal plate, the maximum velocity of electrons emitted is \(v_1\). When the frequency of the incident radiation is increased to \(5\nu_0,\) the maximum velocity of electrons emitted from the same plate is \(v_2.\) What will be the ratio of \(v_1\) to \(v_2\)?

1. \(1:2\) 2. \(1:4\)
3. \(4:1\) 4. \(2:1\)
Subtopic:  Einstein's Photoelectric Equation |
 72%
From NCERT
NEET - 2018
To view explanation, please take trial in the course.
NEET 2023 - Target Batch - Aryan Raj Singh
Hints
Links
To view explanation, please take trial in the course.
NEET 2023 - Target Batch - Aryan Raj Singh

The photoelectric threshold wavelength of silver is \(3250\times 10^{-10}~\text{m}\). What will be the velocity of the electron ejected from a silver surface by the ultraviolet light of wavelength \(2536\times 10^{-10}~\text{m}\)? (Given \(h= 4.14\times 10^{-15}~\text{eVs}\) and \(c= 3\times 10^{8}~\text{m/s}\))
1. \(\approx 0.6\times 10^{6}~\text{m/s}\)
2. \(\approx 61\times 10^{3}~\text{m/s}\)
3. \(\approx 0.3\times 10^{6}~\text{m/s}\)
4. \(\approx 0.3\times 10^{5}~\text{m/s}\)

Subtopic:  Einstein's Photoelectric Equation |
From NCERT
NEET - 2017
To view explanation, please take trial in the course.
NEET 2023 - Target Batch - Aryan Raj Singh
Hints
Links
To view explanation, please take trial in the course.
NEET 2023 - Target Batch - Aryan Raj Singh

Photons with energy 5 eV are incident on a cathode C in a photoelectric cell. The maximum energy of emitted photoelectrons is 2 eV. When photons of energy 6 eV are incident on C, no photoelectron will reach the anode A, if the stopping potential of A relative to C is:

1. +3 V

2. +4 V

3. - 1V

4. -3 V

Subtopic:  Einstein's Photoelectric Equation |
 51%
From NCERT
NEET - 2016
To view explanation, please take trial in the course.
NEET 2023 - Target Batch - Aryan Raj Singh
Hints
Links
To view explanation, please take trial in the course.
NEET 2023 - Target Batch - Aryan Raj Singh

advertisementadvertisement

​​​When a metallic surface is illuminated with radiation of wavelength \(\lambda\), the stopping potential is \({V}\). If the same surface is illuminated with radiation of wavelength \(2\lambda\), the stopping potential is \(\frac{{V}}{4}\). The threshold wavelength for the metallic surface is:
1. \(5\lambda\)
2. \(\frac{5}{2} \lambda\)
3. \(3\lambda\)
4. \(4\lambda\)
Subtopic:  Einstein's Photoelectric Equation |
 76%
From NCERT
NEET - 2016
To view explanation, please take trial in the course.
NEET 2023 - Target Batch - Aryan Raj Singh
Hints
Links
To view explanation, please take trial in the course.
NEET 2023 - Target Batch - Aryan Raj Singh