1. | \(25\) m | 2. | \(100\) m |
3. | \(200\) m | 4. | \(500\) m |
1. | \(1 \times 10^6~\text{N/m}^2\) | 2. | \(2 \times 10^7~\text{N/m}^2\) |
3. | \(4 \times 10^8~\text{N/m}^2\) | 4. | \(6 \times 10^{10}~\text{N/m}^2\) |
The bulk modulus of water is \(2\times 10^{9}~\text{N/m}^2.\) The increase in pressure required to decrease the volume of the water sample by \(0.1\%\) is:
1. \(4 \times 10^{6}~\text{N/m}^2\)
2. \(2 \times 10^{6}~\text{N/m}^2\)
3. \(2 \times 10^{8}~\text{N/m}^2\)
4. \(8 \times 10^{6}~\text{N/m}^2\)
A ball falling into a lake of depth \(200~\text{m}\) shows a \(0.1\%\) decrease in its volume at the bottom. What is the bulk modulus of the material of the ball?
1. \(19.6\times 10^{8}~\text{N/m}^2\)
2. \(19.6\times 10^{-10}~\text{N/m}^2\)
3. \(19.6\times 10^{10}~\text{N/m}^2\)
4. \(19.6\times 10^{-8}~\text{N/m}^2\)
The volume contraction of a solid copper cube, \(10~\text{cm}\) on an edge, when subjected to a hydraulic pressure of \(7.0\times10^6~\text{Pa}\) is:
(Bulk modulus of copper is \(140 \times10^{9}~\text{Pa}.\))
1. \( 3.1 \times 10^{-2} ~\text{m}^3 \)
2. \(9.1 \times 10^{-3} ~\text{cm}^3 \)
3. \(5.0 \times 10^{-2} ~\text{cm}^3 \)
4. \(7.9 \times 10^{-2} ~\text{cm}^3 \)
The edge of an aluminum cube is \(10~\text{cm}\) long. One face of the cube is firmly fixed to a vertical wall. A mass of \(100~\text{kg}\) is then attached to the opposite face of the cube. The shear modulus of aluminum is \(25~\text{GPa}.\) What is the vertical deflection of this face?
1. \(4.86\times 10^{-6}~\text{m}\)
2. \(3.92\times 10^{-7}~\text{m}\)
3. \(3.01\times 10^{-7}~\text{m}\)
4. \(6.36\times 10^{-7}~\text{m}\)
The compressibility of water is \(4\times 10^{-5}\) per unit atmospheric pressure. The decrease in volume of \(100\) cubic centimeter of water under a pressure of \(100\) atmosphere will be:
1. \(0.4~\text{cc}\)
2. \(4\times 10^{-5}~\text{cc}\)
3. \(0.025~\text{cc}\)
4. \(0.004~\text{cc}\)
A uniform cube is subjected to volume compression. If each side is decreased by \(1\%\), then bulk strain is:
1. | \(0.01\) | 2. | \(0.06\) |
3. | \(0.02\) | 4. | \(0.03\) |
The bulk modulus of a spherical object is \(B\). If it is subjected to uniform pressure \(P\), the fractional decrease in radius will be:
1. \(\frac{P}{B}\)
2. \(\frac{B}{3P}\)
3. \(\frac{3P}{B}\)
4. \(\frac{P}{3B}\)