The sum of the numbers \(436.32,227.2,\) and \(0.301\) in the appropriate significant figures is:
1. | \( 663.821 \) | 2. | \( 664 \) |
3. | \( 663.8 \) | 4. | \(663.82\) |
The mass and volume of a body are \(4.237~\text{g }\) and \(2.5~\text{cm}^3,\) respectively. The density of the material of the body in correct significant figures will be:
1. \(1.6048~\text{g cm}^{-3}\)
2. \(1.69~\text{g cm}^{-3}\)
3. \(1.7~\text{g cm}^{-3}\)
4. \(1.695~\text{g cm}^{-3}\)
The numbers \(2.745\) and \(2.735\) on rounding off to \(3\) significant figures will give respectively,
1. | \(2.75\) and \(2.74\) | 2. | \(2.74\) and \(2.73\) |
3. | \(2.75\) and \(2.73\) | 4. | \(2.74\) and \(2.74\) |
On the basis of dimensions, decide which of the following relations for the displacement of a particle undergoing simple harmonic motion is/are not correct.
(a) | \(y = a\sin \left(2\pi t / T\right)\) |
(b) | \(y = a\sin(vt)\) |
(c) | \(y = \left({\dfrac a T}\right) \sin \left({\dfrac t a}\right)\) |
(d) | \(y = a \sqrt 2 \left(\sin \left({\dfrac {2 \pi t} T}\right) - \cos \left({\dfrac {2 \pi t} T}\right)\right)\) |
(Symbols have their usual meanings.)
Choose the correct option:
1. | (a), (c) |
2. | (a), (b) |
3. | (b), (c) |
4. | (a), (d) |
The density of a material in a CGS system of units is \(4~\text{grams/cm}^3\). In a system of units in which the unit of length is \(10~\text{cm}\) and the unit of mass is \(100~\text{grams}\), the value of the density of the material will be:
1. \( 0.04 \)
2. \( 0.4 \)
3. \( 40 \)
4. \(400\)
An object is moving through a liquid. The viscous damping force acting on it is proportional to the velocity. Then the dimensions of the constant of proportionality are:
1. \(\left[ML^{-1}T^{-1}\right]\)
2. \(\left[MLT^{-1}\right]\)
3. \(\left[M^0LT^{-1}\right]\)
4. \(\left[ML^{0}T^{-1}\right]\)
The dimensions of \((\mu_0\varepsilon_0)^{\frac{-1}{2}}\) are:
1. \(\left[L^{-1}T\right]\)
2. \(\left[LT^{-1}\right]\)
3. \(\left[L^{{-1/2}}T^{{1/2}}\right]\)
4. \(\left[L^{{-1/2}}T^{{-1/2}}\right]\)
If \(y = a\sin(bt-cx)\), where \(y\) and \(x\) represent length and \(t\) represents time, then which of the following has the same dimensions as that of \(\dfrac{ab^2}{c}?\)
1. \((\text{speed})^2\)
2. \(\text{momentum}\)
3. \(\text{angle}\)
4. \(\text{acceleration}\)
The universal gravitational constant is dimensionally represented as:
1. \(\left[ML^2T^{-1}\right]\)
2. \(\left[M^{-2}L^3T^{-2}\right]\)
3. \(\left[M^{-2}L^2T^{-1}\right]\)
4. \(\left[M^{-1}L^3T^{-2}\right]\)
The angle of \(1^\circ\) (degree) will be equal to:
(Use \(360^\circ=2\pi\) rad)
1. \(1.034\times10^{-3}\) rad
2. \(1.745\times10^{-2}\) rad
3. \(1.524\times10^{-2}\) rad
4. \(1.745\times10^{3}\) rad