A waveform given by:    \(y=3A\sin(\omega t-kx)\)
is superposed with another waveform \(y=4A\cos(\omega t-kx).\) The amplitude of the resulting waveform will be:
1. \(7A\) 2. \(A\)
3. \(3.5A\) 4. \(5A\)

Subtopic:  Wave Motion |
 85%
From NCERT
To view explanation, please take trial in the course.
NEET 2026 - Target Batch - Vital
Hints
To view explanation, please take trial in the course.
NEET 2026 - Target Batch - Vital

If the initial tension on a stretched string is doubled, then the ratio of the initial and final speeds of a transverse wave along the string is: 
1. \(1:2\)
2. \(1:1\)
3. \(\sqrt{2}:1\)
4. \(1:\sqrt{2}\)
Subtopic:  Travelling Wave on String |
 71%
From NCERT
NEET - 2022
To view explanation, please take trial in the course.
NEET 2026 - Target Batch - Vital
Hints
To view explanation, please take trial in the course.
NEET 2026 - Target Batch - Vital

A string of length \(l\) is fixed at both ends and is vibrating in second harmonic. The amplitude at antinode is \(2\) mm. The amplitude of a particle at a distance \(l/8\) from the fixed end is:
        
1. \(2\sqrt2~\text{mm}\)
2. \(4~\text{mm}\)
3. \(\sqrt2~\text{mm}\)
4. \(2\sqrt3~\text{mm}\)

Subtopic:  Standing Waves |
 55%
From NCERT
NEET - 2022
To view explanation, please take trial in the course.
NEET 2026 - Target Batch - Vital
Hints
To view explanation, please take trial in the course.
NEET 2026 - Target Batch - Vital

advertisementadvertisement

A sinusoidal waveform is travelling along the \(x \)-axis. The phase difference between two particles separated by \(10~\text{cm}\) is \(\dfrac\pi{2}{}.\) The wavelength of the wave is:
1. \(20~\text{cm}\)
2. \(30~\text{cm}\)
3. \(40~\text{cm}\)
4. \(80~\text{cm}\)
Subtopic:  Wave Motion |
 87%
From NCERT
To view explanation, please take trial in the course.
NEET 2026 - Target Batch - Vital
Hints
To view explanation, please take trial in the course.
NEET 2026 - Target Batch - Vital

An organ pipe filled with a gas at \(27^\circ \text{C}\) resonates at \(400~\text{Hz}\) in its fundamental mode. If it is filled with the same gas at \(90^\circ \text{C},\) the resonance frequency at the same mode will be:
1. \(420~\text{Hz}\)
2. \(440~\text{Hz}\)
3. \(484~\text{Hz}\)
4. \(512~\text{Hz}\)
Subtopic:  Standing Waves |
 70%
From NCERT
NEET - 2022
To view explanation, please take trial in the course.
NEET 2026 - Target Batch - Vital
Hints
To view explanation, please take trial in the course.
NEET 2026 - Target Batch - Vital

The equation of vibration of a taut string, fixed at both ends, is given by: \(y=(4~\text{mm})~\cos\Big(\dfrac{\pi x}{30~\text{cm}}\Big)~\sin\Big(400\pi~ \text{s}^{-1}t\Big) .\) The speed of waves on the string is:
1. \(30~\text{m/s}\) 
2. \(60~\text{m/s}\)
3. \(90~\text{m/s}\)
4. \(120~\text{m/s}\)
Subtopic:  Standing Waves |
 86%
From NCERT
To view explanation, please take trial in the course.
NEET 2026 - Target Batch - Vital
Hints
To view explanation, please take trial in the course.
NEET 2026 - Target Batch - Vital

advertisementadvertisement

The first overtone of a closed pipe has a frequency \(f_c.\) A frequency that is \(2f_c\) can be excited from an open pipe of the same length but vibrating in its: 
1. \(2^{\text{nd}}\) harmonic 2. \(3^{\text{rd}}\) harmonic
3. \(6^{\text{th}}\) harmonic 4. \(12^{\text{th}}\) harmonic
Subtopic:  Standing Waves |
 68%
From NCERT
To view explanation, please take trial in the course.
NEET 2026 - Target Batch - Vital
Hints
To view explanation, please take trial in the course.
NEET 2026 - Target Batch - Vital

A string fixed at both ends is under tension \(T.\) It has a length \(L,\) and mass \(m.\) The fundamental frequency of the vibration is: 
1. \(\dfrac{ 1}{2L} \sqrt {\dfrac{T}{m}}\)
2. \(\dfrac{1}{4 L} \sqrt{\dfrac{T}{m}}\)
3. \(\dfrac{1}{2} \sqrt{\dfrac{TL}{2m}}\)
4. \(\dfrac{1}{2} \sqrt{\dfrac{T}{m L}}\)
Subtopic:  Travelling Wave on String |
 57%
From NCERT
To view explanation, please take trial in the course.
NEET 2026 - Target Batch - Vital
Hints
To view explanation, please take trial in the course.
NEET 2026 - Target Batch - Vital

The fundamental frequencies of a closed pipe and an open pipe are identical. The first overtone for the closed pipe is \(f_c\) and for the open pipe is \(f_o.\) Their ratio \(\dfrac{f_c}{f_o}\) is:
1. \(1\) 2. \(1/2\)
3. \(2/3\) 4. \(3/2\)
Subtopic:  Standing Waves |
 70%
From NCERT
To view explanation, please take trial in the course.
NEET 2026 - Target Batch - Vital
Hints
To view explanation, please take trial in the course.
NEET 2026 - Target Batch - Vital

advertisementadvertisement

Sinusoidal sound waves of the same frequency travelling in air along the \(x\)-axis and the \(y\)-axis arrive in phase with each other at the origin. Their amplitudes are equal to \(A\) (each). The amplitude of the vibration at the origin is:
1. \(A\) 2. \(\sqrt 2A\)
3. \(2A\) 4. \((2+\sqrt2)A\)
Subtopic:  Wave Motion |
From NCERT
To view explanation, please take trial in the course.
NEET 2026 - Target Batch - Vital
Hints
To view explanation, please take trial in the course.
NEET 2026 - Target Batch - Vital