Kepler's third law states that the square of the period of revolution (\(T\)) of a planet around the sun, is proportional to the third power of average distance \(r\) between the sun and planet i.e. \(T^2 = Kr^3\), here \(K\) is constant. If the masses of the sun and planet are \(M\) and \(m\) respectively, then as per Newton's law of gravitation, the force of attraction between them is \(F = \frac{GMm}{r^2},\) here \(G\) is the gravitational constant. The relation between \(G\) and \(K\) is described as:
1. \(GK = 4\pi^2\)
2. \(GMK = 4\pi^2\)
3. \(K =G\)
4. \(K = \frac{1}{G}\)

Subtopic:  Kepler's Laws |
 79%
From NCERT
NEET - 2015
To view explanation, please take trial in the course.
NEET 2023 - Target Batch - Aryan Raj Singh
Hints
Links
To view explanation, please take trial in the course.
NEET 2023 - Target Batch - Aryan Raj Singh

Two spherical bodies of masses \(M\) and \(5M\) and radii \(R\) and \(2R\) are released in free space with initial separation between their centres equal to \(12R.\) If they attract each other due to gravitational force only, then the distance covered by the smaller body before the collision is:

1. \(2.5R\) 2. \(4.5R\)
3. \(7.5R\) 4. \(1.5R\)

Subtopic:  Newton's Law of Gravitation |
 60%
From NCERT
NEET - 2015
To view explanation, please take trial in the course.
NEET 2023 - Target Batch - Aryan Raj Singh
Hints
Links
To view explanation, please take trial in the course.
NEET 2023 - Target Batch - Aryan Raj Singh

A black hole is an object whose gravitational field is so strong that even light cannot escape from it. To what approximate radius would Earth (mass \(= 5.98\times 10^{24}~\text{kg}\)) have to be compressed to be a black hole?
1. \(10^{-9}~\text{m}\)
2. \(10^{-6}~\text{m}\)
3. \(10^{-2}~\text{m}\)
4. \(100​~\text{m}\)

Subtopic:  Escape velocity |
 61%
From NCERT
AIPMT - 2014
To view explanation, please take trial in the course.
NEET 2023 - Target Batch - Aryan Raj Singh
Hints
Links
To view explanation, please take trial in the course.
NEET 2023 - Target Batch - Aryan Raj Singh

advertisementadvertisement

A body of mass \(m\) is taken from the Earth’s surface to the height equal to twice the radius \((R)\) of the Earth. The change in potential energy of the body will be: 

1. \(\frac{2}{3}mgR\) 2. \(3mgR\)
3. \(\frac{1}{3}mgR\) 4. \(2mgR\)
Subtopic:  Gravitational Potential Energy |
 76%
From NCERT
AIPMT - 2013
To view explanation, please take trial in the course.
NEET 2023 - Target Batch - Aryan Raj Singh
Hints
Links
To view explanation, please take trial in the course.
NEET 2023 - Target Batch - Aryan Raj Singh

A body projected vertically from the earth reaches a height equal to earth’s radius before returning to the earth. The power exerted by the gravitational force:

1. is greatest at the instant just before the body hits the earth.
2. remains constant throughout.
3. is greatest at the instant just after the body is projected.
4. is greatest at the highest position of the body.

Subtopic:  Acceleration due to Gravity |
 58%
From NCERT
AIPMT - 2011
To view explanation, please take trial in the course.
NEET 2023 - Target Batch - Aryan Raj Singh
Hints
Links
To view explanation, please take trial in the course.
NEET 2023 - Target Batch - Aryan Raj Singh

The figure shows the elliptical orbit of a planet \(m\) about the sun \(\mathrm{S}.\) The shaded area \(\mathrm{SCD}\) is twice the shaded area \(\mathrm{SAB}.\) If \(t_1\) is the time for the planet to move from \(\mathrm{C}\) to \(\mathrm{D}\) and \(t_2\) is the time to move from \(\mathrm{A}\) to \(\mathrm{B},\) then:
           

1. \(t_1>t_2\) 2. \(t_1=4t_2\)
3. \(t_1=2t_2\) 4. \(t_1=t_2\)


Subtopic:  Kepler's Laws |
 71%
From NCERT
AIPMT - 2009
To view explanation, please take trial in the course.
NEET 2023 - Target Batch - Aryan Raj Singh
Hints
Links
To view explanation, please take trial in the course.
NEET 2023 - Target Batch - Aryan Raj Singh

advertisementadvertisement

Two satellites of Earth, \(S_1\), and \(S_2\), are moving in the same orbit. The mass of \(S_1\) is four times the mass of \(S_2\). Which one of the following statements is true?

1. The time period of \(S_1\) is four times that of \(S_2\).
2. The potential energies of the earth and satellite
in the two cases are equal.
3. \(S_1\) and \(S_2\) are moving at the same speed.
4. The kinetic energies of the two satellites are equal.

Subtopic:  Satellite |
 67%
From NCERT
AIPMT - 2007
To view explanation, please take trial in the course.
NEET 2023 - Target Batch - Aryan Raj Singh
Hints
Links
To view explanation, please take trial in the course.
NEET 2023 - Target Batch - Aryan Raj Singh

The earth is assumed to be a sphere of radius R. A platform is arranged at a height R from the surface of the earth. The escape velocity of a body from this platform is fve, where ve is its escape velocity from the surface of the earth. The value of f is:

1. 2

2. 12

3. 13

4. 12

Subtopic:  Escape velocity |
 68%
From NCERT
AIPMT - 2006
To view explanation, please take trial in the course.
NEET 2023 - Target Batch - Aryan Raj Singh
Hints
Links
To view explanation, please take trial in the course.
NEET 2023 - Target Batch - Aryan Raj Singh

A body weighs \(200\) N on the surface of the earth. How much will it weigh halfway down the centre of the earth?

1. \(100\) N 2. \(150\) N
3. \(200\) N 4. \(250\) N
Subtopic:  Acceleration due to Gravity |
 79%
From NCERT
NEET - 2019
To view explanation, please take trial in the course.
NEET 2023 - Target Batch - Aryan Raj Singh
Hints
Links
To view explanation, please take trial in the course.
NEET 2023 - Target Batch - Aryan Raj Singh

advertisementadvertisement

A satellite S is moving in an elliptical orbit around the earth. If the mass of the satellite is very small as compared to the mass of the earth, then:

1. The angular momentum of S about the centre of the earth changes in direction, but its magnitude remains constant.
2. The total mechanical energy of S varies periodically with time.
3. The linear momentum of S remains constant in magnitude.
4. The acceleration of S is always directed towards the centre of the earth.

Subtopic:  Orbital velocity |
 57%
From NCERT
NEET - 2015
To view explanation, please take trial in the course.
NEET 2023 - Target Batch - Aryan Raj Singh
Hints
Links
To view explanation, please take trial in the course.
NEET 2023 - Target Batch - Aryan Raj Singh