Two particles are oscillating along two close parallel straight lines side by side, with the same frequency and amplitudes. They pass each other, moving in opposite directions when their displacement is half of the amplitude. The mean positions of the two particles lie in a straight line perpendicular to the paths of the two particles. The phase difference is:
1. \(\frac{\pi}{6}\)
2. \(0\)
3. \(\frac{2\pi}{3}\)
4. \(\pi\)

Subtopic:  Linear SHM |
 56%
From NCERT
AIPMT - 2011
To view explanation, please take trial in the course.
NEET 2025 - Target Batch
Hints
To view explanation, please take trial in the course.
NEET 2025 - Target Batch

If the time of mean position from amplitude (extreme) position is \(6\) seconds, then the frequency of SHM will be:
1. \(0.01~\text{Hz}\) 2. \(0.02~\text{Hz}\)
3. \(0.03~\text{Hz}\) 4. \(0.04~\text{Hz}\)
Subtopic:  Simple Harmonic Motion |
 68%
From NCERT
AIPMT - 1998
To view explanation, please take trial in the course.
NEET 2025 - Target Batch
Hints
To view explanation, please take trial in the course.
NEET 2025 - Target Batch

A particle executing simple harmonic motion of amplitude \(5~\text{cm}\) has a maximum speed of \(31.4~\text{cm/s}.\) The frequency of its oscillation will be:
1. \(1~\text{Hz}\)
2. \(3~\text{Hz}\)
3. \(2~\text{Hz}\)
4. \(4~\text{Hz}\)

Subtopic:  Linear SHM |
 86%
From NCERT
AIPMT - 2005
To view explanation, please take trial in the course.
NEET 2025 - Target Batch
Hints
To view explanation, please take trial in the course.
NEET 2025 - Target Batch

advertisementadvertisement

Two spherical bobs of masses \(M_A\) and \(M_B\) are hung vertically from two strings of length \(l_A\) and \(l_B\) respectively. If they are executing SHM with frequency as per the relation \(f_A=2f_B,\) Then:
1. \(l_A = \frac{l_B}{4}\)
2. \(l_A= 4l_B\)
3. \(l_A= 2l_B~\&~M_A=2M_B\)
4. \(l_A= \frac{l_B}{2}~\&~M_A=\frac{M_B}{2}\)

Subtopic:  Angular SHM |
 72%
From NCERT
AIPMT - 2000
To view explanation, please take trial in the course.
NEET 2025 - Target Batch
Hints
To view explanation, please take trial in the course.
NEET 2025 - Target Batch

The circular motion of a particle with constant speed is:

1. Periodic and simple harmonic 2. Simple harmonic but not periodic
3. Neither periodic nor simple harmonic 4. Periodic but not simple harmonic
Subtopic:  Types of Motion |
 80%
From NCERT
AIPMT - 2005
To view explanation, please take trial in the course.
NEET 2025 - Target Batch
Hints
To view explanation, please take trial in the course.
NEET 2025 - Target Batch

The frequency of a spring is \(n\) after suspending mass \(M.\) Now, after mass \(4M\) mass is suspended from the spring, the frequency will be:
1. \(2n\) 2. \(n/2\)
3. \(n\) 4. none of the above
Subtopic:  Spring mass system |
 81%
From NCERT
AIPMT - 1998
To view explanation, please take trial in the course.
NEET 2025 - Target Batch
Hints
To view explanation, please take trial in the course.
NEET 2025 - Target Batch

advertisementadvertisement

Which one of the following statements is true for the speed \(v\) and the acceleration \(a\) of a particle executing simple harmonic motion?
1. The value of \(a\) is zero whatever may be the value of \(v\).
2. When \(v\) is zero, \(a\) is zero.
3. When \(v\) is maximum, \(a\) is zero.
4. When \(v\) is maximum, \(a\) is maximum. 
Subtopic:  Simple Harmonic Motion |
 86%
From NCERT
AIPMT - 2004
To view explanation, please take trial in the course.
NEET 2025 - Target Batch
Hints
To view explanation, please take trial in the course.
NEET 2025 - Target Batch

A spring elongates by a length 'L' when a mass 'M' is suspended to it. Now a tiny mass 'm' is attached to the mass 'M' and then released. The new time period of oscillation will be:

1.  \(2 \pi \sqrt{\frac{\left(\right. M   +   m \left.\right) l}{Mg}}\)

2. \(2 \pi \sqrt{\frac{ml}{Mg}}\)

3. \(2 \pi \sqrt{L   /   g}\)

4. \(2 \pi \sqrt{\frac{Ml}{\left(\right. m   +   M \left.\right) g}}\)

Subtopic:  Spring mass system |
 59%
From NCERT
AIPMT - 1999
To view explanation, please take trial in the course.
NEET 2025 - Target Batch
Hints
To view explanation, please take trial in the course.
NEET 2025 - Target Batch

The frequency of a simple pendulum in a free-falling lift will be:
1. zero
2. infinite
3. can't say
4. finite

Subtopic:  Angular SHM |
 67%
From NCERT
AIPMT - 1999
To view explanation, please take trial in the course.
NEET 2025 - Target Batch
Hints
To view explanation, please take trial in the course.
NEET 2025 - Target Batch

advertisementadvertisement

When a mass is suspended separately by two different springs, in successive order, then the time period of oscillations is \(t _1\) and \(t_2\) respectively. If it is connected by both springs as shown in the figure below, then the time period of oscillation becomes \(t_0.\) The correct relation between \(t_0,\) \(t_1\) & \(t_2\) is:

1. t02=t12+t22

2. t0-2=t1-2+t2-2

3. t0-1=t1-1+t2-1

4. t0=t1+t2

Subtopic:  Combination of Springs |
 69%
From NCERT
AIPMT - 2002
To view explanation, please take trial in the course.
NEET 2025 - Target Batch
Hints
To view explanation, please take trial in the course.
NEET 2025 - Target Batch